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CHAPTER 1
INTRODUCTION

It has become common practice to compute hedonic price indexes to estimate the price
changes for a product holding the product quality constant. Recently, a great deal of atten-
tion has been given to a number of factors surrounding these indexes such as the functional
form to use when estimating the hedonic price function and the set of product character-
istics to include in that function. In addition to these factors, a great deal of research has
evolved around the procedure and necessary conditions for estimating demand and supply
parameters from the estimated hedonic price function. However, little attention has been
given to analyzing the implications of these indexes. In other words, while it is well known
that hedonic indexes provide us with a good estimate of the price per quality change in a
product over time, it is not well known what other information can be extracted from these

indexes.

One question of interest is: How much do buyers benefit from improvements in product
technology? Since the hedonic index tells us how much more quality a buyer can purchase
holding price fixed, one might believe that the hedonic index provides us with an answer to
our posed question. In some sense the hedonic index does provide us with an estimate of this
benefit, except that it ignores important factors. First, the hedonic index implicitly assumes
that all levels of product quality exist at all time periods. Thus, buyers cannot benefit
from the introduction of previously unavailable product quality levels. Second, and related,
since all quality levels are assumed to exist, buyers cannot benefit from the introduction of
a greater variety of product quality levels. Buyers obviously benefit from these factors in
addition to the buying power factor, and a price index, such as the hedonic index, which

ignores them will be a biased estimate of the benefits received.

In this research we look at an alternative to the hedonic index for estimating the benefits
buyers receive from improving product technology. As with the traditional hedonic method,

1
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this alternative begins by estimating a hedoric price function. However, the similarity ends
there as we continue beyond this price function and estimate demand relationships for char-
acteristics for individual buyers. With these demand curves we predict buyers’ past and
future product purchases assuming that their demands do not change over time. We predict
these purchases by allowing buyers to optimize their individual bid curves subject to past
and future hedonic price functions. In this fashion we are able to determine the benefits the
buyer receives from both a lower price and higher quality. It is capturing this higher quality
level which distinguishes our index from the hedonic index. After predicting past and future
purchases, we compute a price equivalent utility index which measures the benefits a buyer
receives from being able to move from one bid curve to another over time. We then aggregate
the indexes of the individual buyers to compute a single benefit index for the product for a
given time period. We apply our model to data on the mainframe computer market from
1985-1991 and compare the results with those obtained from the traditional hedonic index

approach.

This research is important for a number of reasons. First, as Trajtenberg (1990) has
pointed out, it is important to measure new technology or product innovation in terms of
its benefits to buyers of that technology. The hedonic index merely estimates the change
in price per quality over time and does not take into consideration what if any of the new
technology is being purchased. As Greenstein (1994) has pointed out, the time between
the introduction of a new mainframe computer and the time when that computer becomes
the average computer purchased is between six and eight years. With this lag, we would
expect that the hedonic index which does not account for actual purchases would be a biased
estimate of the benefits to buyers. We expect this bias to be in the direction of overstating the
benefits to buyers. Second, because the hedonic index does not account for actual product
purchases, it is not sensitive to the distribution of buyers across the product space. Thus,
a market where every purchaser buys the same product will have the same hedonic price
index as a market where every purchaser buys a different product. This implicitly assumes

2
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that all buyers benefit by exactly the same amount as the hedonic price function shifts over
time. Results from our benefit index indicate that this assumption is not valid, and, in
fact, buyers at different locations in the product space receive different levels of benefits
depending on the shape of their individual bid curves. This implies that the hedonic price
index will be biased as an estimate of the benefits to buyers. Third, hedonic price indexes
are used by the U.S. government to compute official price indexes. The biases pointed out
here imply that these official indexes are inadequately measuring the benefits associated with

quality-adjusted price changes.

In chapter 2, we examine the relationships between the hedonic price index and our
utility index. We compare the indexes both geometrically and via four numerical examples.
The geometric analysis shows that in general the hedonic index will decline at a faster rate
than our utility index. This in turn implies that a hedonic index will overstate the benefits
buyers receive from changes in the hedonic price function over time. We find that this
result is mainly due to the assumption that buyers have a diminishing marginal utility for
higher levels of product characteristics. We believe that this is a natural assumption, and it
follows closely the model described by Rosen (1974). The numerical examples illustrate two
main points. First, we find that the utility index is sensitive to the distribution of buyers
across the product space. This implies that buyers at different portions of the product space
receive different levels of benefits. The hedonic index does not allow for this and therefore
biases it as an estimate of the benefits to buyers from new technology. Second, we find
that the utility index is sensitive to the maximum available levels of characteristics. The
hedonic index assumes that all levels of characteristics already exist and cannot account for
the development of higher levels of quality. The results here indicate that these levels are
important for determining the benefits to buyers, and imply that the hedonic index will

provide a biased estimate of the benefits to buyers.

Now, given our findings in chapter 2, it is important to get an indication of the degree
of bias that the hedonic index provides. Given that the hedonic index is quite simple to

3
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compute and the benefit index is quite difficult to compute, should the bias be small, we
might still advocate the use of the hedonic price index as an estimate of the benefits to

buyers from new technology.

In order to address the issue of the extent of bias, we apply our model to data on the
mainframe computer industry from 1985-1991 in chapter 3. This data is quite detailed and is
the main reason we are able to follow this line of research. Previous research had data on the
set of available computers, their characteristics and prices. We not only have this data, but
we also have data on the set of computers actually purchased as well as information pertaining
to the actual buyers. This data allowed us to extend the traditional hedonic approach by
estimating demand for characteristics for individual buyers and using those estimates to
predict past and future computer purchases. Being able to predict these purchases allowed
us to measure benefits not only in terms of lower price, as the hedonic index, but also in terms
of higher quality levels purchased. The data which was available to previous researchers was
insufficient to compute these demand estimates, and thus insufficient to predict past and
future purchases. Without these predictions one could not compute a utility index of the

type we have computed.

The results in chapter 3 indicate that the hedonic index overstates the benefits to buyers
by as much as 50%. This bias was sensitive, though, to the set of buyers we used to compute
the index, i.e. the index computed using the 1985 set of buyers as the base revealed a different
level of benefits than the index computed using the 1991 set of buyers. This supports the
finding in chapter 2 that the distribution of buyers is an important factor when computing

the benefit index.

One of our concerns with the results obtained in chapter 3 was the sensitivity of the
results to the functional form used to estimate the hedonic price function. This is an is-
sue which has received much attention in the literature and we addressed it in chapter 4.
We compared a number of alternative functional forms to the quadratic form we adopted
in chapter 3. These alternatives included linear, log-linear, log-log, cubic and generalized

4
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additive models. In general we found that the quadratic model offered a good approxima-
tion to the alternatives. However, we found with the log-log and generalized additive model
that they provided significantly better fits than the quadratic. Unfortunately, these models
turned out to be quite difficult to use when attempting to compute the benefit index. Due to
this factor, we advocate the quadratic model for now as an approximation and recommend
pursuing this issue further in future research.

In addition to the difficulties encountered with regard to computing the benefit index
using the alternative functional forms, we found that computing standard errors for the
benefit index could be quite difficult. We believe that some delta-method approach or some
bootstrap approach will be necessary to derive standard errors for the benefit index. Only
with these standard errors in hand will we be able to completely investigate the importance

of the choice of functional form on the benefit index.
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CHAPTER 2
AN ANALYTICAL COMPARISON OF THE INDEXES

2.1 INTRODUCTION

One of the most common methods for measuring technological change is the hedonic
price index. This method measures the average change in product price holding product
quality constant. However, as Trajtenberg (1990) points out, this method does not account
for “filling-in” or “extensions” in the product space, nor does it take into consideration the
benefits buyers receive from product innovation. In this chapter we describe an alternative
procedure based on Rosen (1974) that uses buyer’s demand for product characteristics to

measure how much buyers benefit from improvements in product technology.

We compare this method with the hedonic index method both geometrically and via a
numerical example. We show that our benefit (or utility) index will in most cases decline
at a slower rate than a hedonic index, implying that a hedonic index overstates the true
benefits to buyers from improvements in product technology. We also show that our benefit
index accounts for the distribution of buyers across the product space as well as extensions

in the product space, whereas the hedonic index does not account for either factor.

These findings are important for a number of reasons. First, as Trajtenberg (1990) ar-
gues, product innovations must be measured in terms of their benefits to buyers. The slower
rate of decline for the benefit index implies that hedonic indexes are not properly measuring
the benefits to buyers from improvements in technology. Second, buyers purchasing low
levels of quality do not receive the same benefits from advances in technology as buyers
purchasing high levels of quality. Since the hedonic index does not account for individual
buyers, it cannot account for this factor, whereas our benefit index does. Finally, a hedonic
index disregards the effects of the introduction of higher levels of characteristics than were
previously available. However, as will be demonstrated in our numerical example, buyer’s

6
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benefits from new technology are sensitive to the level of the highest quality available. Each
of these factors is important for the computation of the benefits from new technology. Un-
fortunately, the hedonic index is unable to account for these; thus, the computation of the
benefits from product innovation requires some alternative procedure. In chapter 2 we will
examine the extent of the bias of the hedonic index when computing the benefits to buyers
from product innovation.

In the next section we will describe the methods for computing hedonic indexes and for
computing our benefit index. In section 3 we will compare these methods geometrically, and
in section 4 we will compare the methods via a numerical example. These two sections will
illustrate the importance of various factors to the computation of these indexes. In the final

section we will give concluding remarks.

2.2 COMPUTING THE INDEXES

2.2.1 The Hedonic Index

Hedonic methods have been used since Court (1939) to compute quality-adjusted price
indexes for quality differentiated products. The methods have been applied to a variety of
industries, most commonly automobiles and computers. In 1986 the methods were accepted
by the Bureau of Economic Analysis for the computation of the official price index for
computers. This section will describe basic hedonic theory and a method for deriving quality-
adjusted price indexes from estimated hedonic surfaces.

The main idea behind the hedonic price index is that a quality differentiated product
can be described by a (small) set of product characteristics. For example, computer speed
and memory are typically chosen as characteristics. At a given time ¢, there are m; products

available and n; products sold.! The goal of the hedonic is to estimate a relationship between

1 If we assume that the m, products only consist of pioducts actually purchased, then n, > m,. However,
if not all m; products are purchased we could have n; < m;,.

7
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product price and product characteristics of the form

Pt = H(m]h"'azkt)' (2'21)

Py is an ng-vector of observations of product prices and zj, j = 1,...,k are ns-vectors of
observations on k product characteristics. The variables are subscripted with #’s because
we assume that the surface shifts over time. In the computer literature, (2.2.1) is typically

estimated as an OLS regression of the form (Triplett, 1989):

k T
log(P:) = fo + Z B log(z;) + Z y¢D¢ + €. (2.2.2)
1=1 t=2

The D, are time dummy variables, implying that the surfaces are separated only by a con-
stant, 71.2

Having estimated (2.2.2), our goal is to derive a quality-adjusted price index. We choose
t = 1 as our base year so that Ij, the price index at ¢ = 1, equals 100.00.> We need to
compute Iy, t = 2,...,T. In (2.2.2), the estimates of v; represent the change in log(F;)
holding all other variables fixed. Thus, we can use the 4;’s to determine how much log(F;)
changed between ¢ = 1 and ¢ = ¢ holding quality constant. Then, since our interest is P
and not log(P;), we can estimate the change in price between ¢t = 1 and ¢ = ¢ by exp(:),
t=2,...,T. Note that exp(%:) is not an unbiased estimate of exp(7:). A standard method
for correcting this bias is to add one-half the coefficients’ variance to the estimated coefficient
(Goldberger, 1968; Teekens & Koerts, 1972; Triplett, 1989).

Berndt (1991) describes a number of issues that surround the computation of these
indexes. We will discuss two. First, (2.2.1) is commonly estimated as log-log. However, no
theoretical justification exists for this choice. It is usually chosen based on some goodness-

of-fit criterion. Triplett (1989) has argued that the log-log specification is incompatible with

2 Actually, this is true only if we are interested in log(P;). If our interest is P, then the difference is
multiplicative in exp(7:).

3 The choice to set the base to t = 1 is arbitrary. We did this because we set y; = 0. Had we excluded
some other year’s dummy variable we would have set that year to the base year.
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a priori knowledge of the computer industry and that other forms should be tried. To date,
though, little research on computers has addressed this issue directly; see however Berndt,

Showalter & Woolridge (1993).

Second, these quality-adjusted indexes answer the question: How much has the average
price of a product fallen over time holding product quality constant? Another question one
might ask is: How much have buyers benefited from improvements in quality? Answering
the second question is important because it is important to measure technological change in
terms of its benefits to buyers, rather than simply as a reduction in prices. Unfortunately,
obtaining an answer to the second question is much more difficult. This requires data on
individual buyers and estimates of demand for product characteristics, in addition to the
hedonic surfaces estimates. This type of data is often not available. Previous work has
had data on the prices and characteristics of individual computer systems and occasionally
on the number of each system sold. However, these previous studies have not used any
information regarding the buyers of these systems. In chapter 3 we will describe the data we
will use to perform our empirical analysis. It includes data on the computer systems as well
as information on the buyers. With this data we will estimate a benefit index for buyers,

and we will compare its estimates with the hedonic index.

2.2.2 The Benefit Index

Rosen (1974) described the theory underlying a hedonic surface. He showed that the
surface could be viewed as an envelope to buyers’ bid curves and sellers’ offer curves. A bid
curve is a relationship which describes a buyer’s willingness to trade-off price for product
characteristics when making a purchase decision. An offer curve represents the same trade-off
for making the selling decision. Buyers and sellers use these to choose the optimal product,
and transactions occur where these bid and offer curves are tangent. The hedonic surface
then maps out this set of transactions. This can be seen in Figure 2.2.1 for a product with

9
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a single characteristic dimension z. Here the buyer purchased a product with characteristic
level 2° for price P? at time t. Hy maps out the set of all transactions at time ¢, and Hyx
maps out the set of all transactions at time ¢ + k.

The traditional hedonic method estimates the change in price for z° between time ¢ and
time ¢+ k, or P — Pl. Our interest is in determining how much the buyer benefits between
time periods assuming the buyer maximizes his bid curve at both time periods. Notice that in
Figure 2.2.1 the buyer optimally chooses  at time ¢+ k rather that £%. This implies that the
buyer benefits from both a reduction in prices and an increase in the level of characteristics
purchased. The hedonic index on the other hand only accounts for the reduction in prices
beteen the two time periods. Therefore, in general the benefit index will be different than
the hedonic index. Our goal in this chapter is to gain some insight regarding the relationship
between the two indexes. First, though, let us define the benefit index more formally.

We assume that each buyer solves

max u(z,P)  s.t. P = Hyz) (2.2.3)

where u represents the buyers utility from purchasing characteristics z for price P, Hy is
the hedonic price function at time ¢, = is a vector of product characteristics and P is the
product price. H is assumed to be twice continuously differentiable with dH/dz > 0.° u
is chosen such that uy > 0, uzz < 0 and up < 0. Finally, we assume that prices decline
and higher levels of characteristics become available simultaneously over time. This mirrors

actual observations in the computer industry. The first order condition for (2.2.3) is

Vu(z, Hy(z)) = 0. (2.2.4)

Solving this implies an optimal choice for z at time ¢, which we will call z}. We then

define P? = Hy(z) and u® = u(z?, PP).

4 We assume for simplicity that H; is exogenous to buyers.
5 This rules out the possibility of “filling-in” the product space. Thus, with our model, all technological
innovation must come in the form of extensions in the product space.
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Substituting Heyx for Hy in (2.2.4), we can obtain an optimal solution for z at time t +k,
which we will call Z,4¢. We then define Py = Hyyr(Ze4k) and g = u(Ee4k, Pryk)-

To compute our benefit index we need to compute the change in utility between time ¢
and time ¢ + k, given by u® — i, ;. Inverting u gives P = F(z,v) where v is indirect utility.
We can compute the utility change in price units by F(Zy4x,u®) — F(Z¢4k, ts41). We define
F(%441,u0) as Ply- F(Z¢yk,teqk) is the same as Pz+k defined above. Thus, the utility
change measured in price units is Py, ; — Pt-}-k-

Given this we set the base year for our index to ¢t = ¢, implying I; = 100. We then
compute I; 414 as P;,t+k / P44 for an individual buyer, or as

iz Wiligtk

Ty = =~ (2.2.5)

i=1 Wi
for the entire market. w; represents some weight typically chosen as P3 or P‘-",‘t 4+ Inan
analagous fashion we could compute Ij4g41,...,IT.

The index computation that we have described may be sensitive to the initial set of
buyers used. Therefore it is important to compute the index using different sets of buyers
and to compare the outcomes.

The computation changes somewhat when we take buyers from time ¢ and compute the
index for time ¢ — k (instead of time t + k as before). Figure 2.2.2 illustrates this situation.
In the figure, y;_j represents the maximum level of characteristic which was available at
time t — k. As shown, Z;_; is between zero and p;_;. However, the optimal choice for the
buyer might have been ;_ > py_i or £4_p < 0. If the optimal Z,_j is greater than y;_,
we assume the buyer would purchase y;_, the next best thing available; if the optimal Z;_x
is less than zero, we assume this buyer is better off in some alternative market. For example,
with computers a buyer might purchase a minicomputer instead of a mainframe, and in this
context those are considered different markets. In this case we compute the benefit from
moving from z = z{ to z = 0, the point where the buyer would be indifferent between the
two markets.

11
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In any case, we compute Pk /P3 for an individual buyer, or for the entire market:

Dic1 WiPl_ /P (2.2.6)
L 2.

i=1 Wi

where w; = P.

The index that we have described here is a “cost-of-living” index because it tells us how
much money we would have to give to or take from the buyer in order to make them indifferent
between the two time periods. This is in contrast to the hedonic index which only estimates
the average change in price for the product holding product characteristics constant. The

next section compares the hedonic index and our “cost-of-living” index geometrically.
2.3 COMPARING THE INDEXES

The previous section described the methods for obtaining a hedonic price index and a
price equivalent benefit index from a hedonic surface. In this section we will compare these
two indexes geometrically to determine if one or the other price index should decline at a
faster rate. It will be shown that in most cases the benefit index will decline at a slower
rate than the hedonic index; thus the hedonic index overstates the benefits buyers receive
from improvements in product technology. The “forward” index that we will discuss is the
benefit index with buyers moving from time ¢ to time ¢ + &, and the “reverse” index is the
benefit index with buyers moving from time ¢ to time ¢ — k. We assume that prices decline

and higher levels of characteristics become available simultaneously over time.
2.3.1 Hedonic Index vs. Forward Index

Figure 2.3.1 illustrates the situation. We have a product with a single characteristic z.
Our buyer purchases z{ in time ¢ and based on demand we predict the buyer will purchase
Zy4 at time ¢ + k (we call this the counterfactual z). We assume the form of H; and Hyyy is
of the form (2.2.2). Finally, we define F® = F(z,u®) and F = F(z,4) (to simplify notation

12
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we will often drop the utility level argument).

The hedonic index, If_{_k, is computed as Hyyr(Z)/ Hi(Z) where Z is any value of z. From

(2.2.2), this is

I, = exp(Bo + B1log(Z) + Ye4)
t — ~ ~ ~ .
T exp(fo + B log(z) + 1)
Now, assuming that 4 = 0, (2.3.1) reduces to exp(§:+k).” This result was derived in the

(2.3.1)

previous section, but here we point out that this holds true for any z; in particular Z;;.
We focus on Z;4; because the forward index is computed as Iﬁ_k = F(241)/ F*(Ze41)-

Our concern is whether this value will be larger or smaller than ng.

Proposition 2.3.1:Assume the hedonic surfaces are convex for each t, the bid curves are

concave for each t, 41t > x?, H; and u? are tangent at :t:? and Hyyy and @,y are tangent

at Zyy, then the forward benefit index will decline at a slower rate than the hedonic index.
We use the following lemma to illustrate this.

Lemma 2.3.1:If g(-) is convex, h(-) is concave, g(-) and h(-) are twice continuously differ-

entiable, g(-) and h(-) are tangent at z¢ and z; # o, then g(z1) > h(z1).

Proof: Since ¢(-) is convex, we know that g(z;) lies above the line tangent to g(-) at zo.
We also know that since h(-) is concave, h(z1) lies below the line tangent to A(-) at zo. But
g(+) and A(-) are tangent at zo and therefore have the same tangent line at zg. Thus g(z)

must be greater than h(z;).

We know that ﬁ'(a‘:t+k) = Hyyi(2441) and that FO(Z44x) < Hy(#144) from Lemma 2.3.1.

Thus we have

F(3442) < F(Z44)
Hy(2141) ~ F(Ze4)
13
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This implies that

Hipk(Berk) F(2441)
Hy(Z4k) — FOZe4r)

2, <18, (2.3.4)

(2.3.3)

Equation (2.3.4) states that the benefit index will have a larger value than the hedonic index
at time ¢ + k, implying that the hedonic index will decline at a higher rate; how much faster
is unclear from this exercise. Notice that this relationship was computed for a single buyer.

The aggregate benefit index is a weighted average of Ig_k for all buyers. Since (2.3.4) hoids

for all z, when we weight the I'-’Bt +& the final index will maintain the inequality.

2.3.2 Hedonic Index vs. Reverse Index

Figure 2.3.2 illustrates the situation. Again we have a product with a single characteristic
z. The buyer purchases z{ in time ¢ and then we predict what the buyer would have
purchased at time ¢ — k. This is given by &;_j. We show three different Z;_;’s because there
are three cases to examine: 2y ¢ > gk, 0 < Z34— < py—k and £33k < 0. (Recall that
L4k is the maximum amount of z which could be purchased at time ¢t — k).

For any %, the hedonic index is given by I, = H, 1(%)/H,(z). The “reverse” benefit
index is given by 12, = F(2{)/F%x?). Our interest is whether [/, is larger or smaller

than Itlik.

Proposition 2.3.2:Given the assumptions of Proposition 2.3.1, the reverse benefit index

could decline at a higher or lower rate than the hedonic index.

There are three cases which need to be examined in order to see this. In case 1, the
buyer would optimally choose to purchase Z; ;- > p;—x. However, the most z the buyer
can purchase is g;_;. We assume that a buyer faced with this situation will purchase y;_;.

14
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There are two possible outcomes. First, when the buyer purchases y;_; on Fl‘ ¢—k» We could
have Ff,twk(x?) > Hy_i(z{). When this occurs we have I2, > I,  which implies that
the benefit index will have a higher growth rate. Second, when the buyer purchases p;_x
on Ff,t—k’ we could have Ff,t—k(x(t]) < Hy_i(z?). When this occurs we have I2, < I,
implying that the benefit index will have a lower growth rate.’ Therefore, the number of
buyers in each category will determine whether the benefit index ultimately has a higher or
lower growth rate than the hedonic index.

In case 2, we have 0 < %34 < py—g. Since Hy_j is convex , pg,t_k is concave, H;_
and Fz,t—k are tangent at 3, and Z2_; < z?, we have Fz,t_k(x?) < Hy_;(z?) by Lemma
2.3.1. Therefore, we will have It}i < If_’_ ¢ and the benefit index will have a lower growth
rate than the hedonic index.

In the final case, we have %3, < 0. Here we assume that buyers are in some other
market and we compute the benefit level associated with being indifferent between this
market and the other. This occurs at £ = 0 on F?,*,t—k' Since F:;,t— ¢ and H;_j intersect at
0, H,_; is convex, F:;,t—k is concave and z§ > 0, we have Fii_k(xg) < Hy_i(z?) by Lemma
2.3.1. This implies that I£ ES I{i ¢ and the benefit index will have a lower growth rate than
the hedonic index.

Each of these possible outcomes was computed for a single buyer. Our main interest
though is the aggregate index. In general, we will have buyers who fall into each of the four
possible outcomes. Thus, it is unclear whether the aggregate benefit index will show a higher
or lower growth rate than the hedonic index as Proposition 1.3.2 states. We will show in
section 4 that the outcome depends in part on the distribution of buyers across the product

space and in part on the location of py.k.

2.3.3 Forward Index vs. Reverse Index

The two previous sections have compared the forward and reverse benefit indexes with

§ This case is not shown in Figure 2.3.2. This would occur if Fy,_,(z{) was below H;_i(z?) in the figure.
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the hedonic index. There we saw that the forward index should decline at a slower rate than
the hedonic index, and that the reverse index could decline at a faster or slower rate than
the hedonic index depending on various factors. In this section we will compare the forward
index with the reverse index.

With the forward index we observe buyers’ purchases at time ¢, and based on demand
we predict the purchases at time ¢ + k. With the reverse index we observe buyers’ purchases
at time ¢ + k, and based on demand we predict purchases at time ¢. If the set of purchases
predicted from ¢ to ¢ + k is equal to the set of observed purchases at time ¢ + k, and the set
of purchases predicted from ¢ + k to ¢ is equal to the set of observed purchases at time ¢,
then the forward and reverse indexes will have the same growth rate.

The conditions we need to satisfy this relationship, however, are unlikely to be found in
any real data set. A more likely scenario would involve the distribution of buyers changing
over time. In this case, there is little we can say about the relationship between these two
indexes. We can say that if the distribution of buyers is such that the reverse index declines
more rapidly than the hedonic index (as in case 1 above), then, since the forward index must
decline more slowly than the hedonic index, the reverse index will decline faster than the
forward index.

When these conditions are not met there is nothing we can say about the relationship
between these indexes. This can be seen by examining Figure 2.3.3. There we have a product
with a single characteristic z. We show a single buyer in time ¢ who purchases :c(},-,t, and we
predict they purchase Zp .y at time ¢ + k. We also show a single buyer at time t + k who
purchases :c‘}’t', +k» and we predict they purchase £z at time ¢. Based on the shapes of the
bid curves in the figure at time ¢, we see that the forward index will have a higher growth
rate than the reverse index. This comes as a result of the bid curves having equal slopes at
x‘}u +4» but different slopes at all other points (this explains the different choices at time t).

To see that the reverse index could decline more rapidly than the forward index, simply
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interchange the F' and R subscripts in the figure.

2.4 NUMERICAL EXAMPLES

The two previous sections have shown how to compute a hedonic index and our benefit
index, as well as pointing out some of the relationships amongst them. Section 3 pointed
out that the forward and reverse benefit indexes are sensitive to the distribution of buyers
across the product space and the level of the maximum available characteristic, labeled p;_
in the previous section. In this section we provide four examples that illustrate these results.
We show that as the distribution of buyers shifts toward higher levels of characteristics,
the growth rate of our benefit index increases. This implies that buyers who purchase high
levels of characteristics benefit more from extensions in the product space than buyers who
purchase low levels of characteristics. We also show that as the level of the maximum
available characteristic increases, so do the benefits to buyers. This occurs because when
the level of the maximum available characteristic increases, buyers are less constrained when
making purchase decisions and can choose characteristic levels optimally. The first two
examples consider the effects of these factors on the forward index, and the last two examples

examine the effects on the reverse index.
2.4.1 Forward Index

For this example we assume a product with a single characteristic z and we assume two

time periods. We begin by specifying a hedonic surface for each time period given by

Hy: log(P)=a+ blog(x) (2.4.1A)

Hy: log(P)=a+blog(z)+~ (2.4.1B)

where the surfaces are separated only by the constant term 4. This follows closely the
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computer literature where surfaces are typically estimated as log-log and are separated only

by a constant term. Second, we specify a linear bid function for each buyer of the form

Bidi: P = (1 - b)exp(a + blog(ci)) + (exp(a + blog(c,-))c%):c (2.4.2)

where a and b are the same as in (2.4.1A) and (2.4.1B) and ¢; is a parameter which distin-
guishes each buyer’s bid curve. Assuming buyers choose a level of  where (2.4.2) is tangent
to (2.4.1A) at time 1, buyers purchase z1; = ¢;. This can be seen by setting dH,/dz = dP/dz
and solving for z. Then, assuming the slope of the bid curve does not change over time,
buyers purchase z2; = c; exp(7/(1 — b)).

The specification of a linear bid curve in this example does not detract from our main
points. We specify it in this fashion to allow for ease of computation. Since in general buyers’
bid curves will be strictly concave, any growth rates we obtain for our benefit indexes using
a linear bid curve will be higher than they would be normally.

Next we assume that p; is the maximum available level of x at time 1 and p2 is the

maximum available level of z at time 2. Given these definitions we define

cte={ci|cite=pm} (2.4.3A)

&= {ci| ciexp(v/(1 — b)) = pa}- (2.4.3B)

We define these in this way so that the support of c is between € and c*. c* + ¢ represents
the level of ¢ where buyers choose p; at time 1. ¢ represents the level of c at time 1 for a
buyer who will choose p2 at time 2; buyers with ¢ > & will be constrained to also purchase
p2 at time 2. We assume that all levels of = are purchased at time 1 and that no buyers exist
with ¢; > ¢* + €. We assume that at both time periods ¢ is the smallest level of = available
for purchase. All buyers between & and ¢ at time 1 are able to maximize their bid curve at
time 2, while all buyers between ¢ and ¢* + € are constrained to u2 at time 2. Thus, as u2
increases, ¢ increases and less buyers are constrained at time 2.
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We assume a distribution over ¢; for buyers at time 1. We assume

¢ ~ Triangular(e, c* + ¢, m)

where ¢ is the lower bound of the support of the distribution, c* + ¢ is the upper bound of
the support of the distribution and m represents the median. We choose this distribution
for ease of computation. This distribution has a single peak at m and allows one to change
the skewness of the distribution by simply increasing or decreasing m. This is beneficial for
us since one of our goals is to determine the effect on the hedonic index and benefit index
from changes in the skewness of the distribution of buyers. While it may be the case that
no dataset follows a triangular distribution, it does have bounded support and a single peak
which is probably a good first approximation to a typical dataset. This distribution has

density

2¢/c*m, c< m;
f(e)= { (2.4.4)

2(c* — ¢)/c*(c* —m), c=>m.

For reference, see Johnson & Kotz (1970). Given this we can derive

P! = exp(a + blog(c;)); (2.4.5A)
Pr; = exp(a + blog(ci exp(7/(1 — b))) +7), <&  (24.5B)
Pgi = exp(a + blog(¢exp(v/(1 — ))) + ), G>&  (24.5C)
P} = (C" —beit b“:f‘p(”/ (1= b))) exp(a+blog(ci)); <&  (245D)
Pfi= (c‘ et "éjp("/ - b))) exp(a+blog(ci)); e 2&  (245E)

where PO, P and P* have been defined previously. The L subscript represents buyers with
¢; < ¢ and the G subscript represents buyers with ¢; > ¢. Finally, we can specify our forward
benefit index as
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(2.4.6B)

The prices P® and P are found by finding the point where the bid curve for each buyer is
tangent to H; and Hz. We then determine P* by substituting z2; into the equation for the
bid curve at time 1. The index is found by dividing the buyers into three separate groups;
g—¢, c—m and m—(c* +¢). We then integrate over the various regions of c¢. The integrand
is determined by substituting in the appropriate P and P* (depending upon whether ¢ < ¢or
¢ > ¢) and the appropriate density (depending upon whether ¢ < m or ¢ > m). Given (2.4.5)
and (2.4.6) we can determine the effects of changing m and p2. We do this in Examples 1
and 2.

Example 1:Assume that a = 1, b = 2, y = =2, y1 = 1 and pp = 4. Given the setup
just described, if m, the median of the distribution of buyers at time 1, increases, then the

growth rate on the forward benefit index will increase and the average benefit to buyers will

increase.

We see in Table 2.4.1 that as m increases, implying a distribution that moves from
skewed right to skewed left, the index at time 2 decreases. This in turn implies a higher
growth rate and an increase in benefits, i.e. as the median buyer purchases a higher level of
z, the average benefit to buyers increases. With gy fixed, as m increases, a larger number
of buyers necessarily get constrained at p2. However, at the same time that the average
purchase at time 1 is getting larger, so is the average purchase at time 2. This implies that
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as m increases, more buyers take advantage of the extension in the product space (although
for many buyers not as much as they would like). This result in this ezample implies that the
benefits from taking advantage of extensions in the product space outweigh the constraints

at ps.

The most important point to notice about Table 2.4.1 though is that the index at time
2 depends on the distribution of buyers at time 1. A hedonic index at time 2 would be
exp(y) = 13.53 regardless of the distribution at time 1. Our benefit index thus clearly
illustrates that all buyers do not benefit from improvements in product technology by the
same amount and that a hedonic index misrepresents those benefits. In the case of our
forward index we see that the bias of the hedonic index is to overstate the true benefits to
buyers. The next chapter will provide an empirical example using data on the mainframe

computer industry to see if this in fact holds true in that industry.

Example 2:Assume that a = 1, b = 2, v = —2 and m = .5 + € (which implies that buyers
are distributed symmetrically over the product space). Given the setup previously described,

if po increases, then the growth rate of the forward benefit index will decrease.

Table 2.4.2 shows that as p2 increases I increases, implying a lower growth rate and
lower average benefits for buyers. This is counterintuitive to what we expected. pg increasing
has the effect of freeing up a constraint for buyers who would like to purchase more, thus
allowing more benefit as a result of further extensions in the product space. This should
result in a higher growth rate for the index. We get the opposite result. We fear that
this result is a consequence of our definition of P*. The way P* is currently defined, as z;
increases for an individual buyer, so does P*. Since P* is in the denominator for our index,
this has the effect of changing the base for the index, i.e. while P* — P may be increasing,
since P* is also increasing, it is not clear if the index will increase or decrease. A more
appropriate definition of P* would be the P that satisfies Bid(z?, P) = @ where  is the level
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of utility along Bid when Bid is tangent to Hz at . The index would then be computed as
%‘;. Unfortunately, defining P* in this way has the possibility of P* being negative for some
buyers.” We chose to avoid this problem by computing our index at # (which changes over
time) rather than at z° (which remains fixed over time). It appears that this is a potential
problem for the forward index. The reverse index that we will discuss later does not suffer
from this problem and we feel it may be more appropriate. The important question for
the forward index is: How close is the forward index to the reverse index? As an empirical
matter this question is important because in practice the forward index is the easiest and
most obvious to compute. In the next chapter we will consider this issue when comparing

the forward index to the reverse index.
2.4.2 Reverse Index

Up to this point our example has focused on the forward index. Now we will assume we
have a set of buyers at time 2 and we want to determine how much worse off they would

have been had they faced H; instead of Ha. We will define

¢={clcexp(v/(b—1)) = m} (2.4.74)
& = {c| cexp(v/(b—1)) = ¢}; (2.4.7B)
c ={c|c=p}. (2.4.7C)

¢ represents the level of ¢ at time 2 for which buyers would choose to purchase p; at time 1.
® represents the level of ¢ at time 2 for which buyers would choose to purchase € at time 1.

c* represents the maximum level of ¢ at time 2. The bid curve will be given by

Bid; : P =6; + (exp(a + blog(c;) + 7)5)9: (2.4.8)

7 Since the bid curve is concave it will lie below H at % Depending on how “low” H> is and the shape
of the bid curve, we could have the bid curve falling below zero at z°, implying a negative P* and a negative
index.
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where §; is chosen so that the bid curve will be tangent to H2 at time 2 and H; at time
1. This bid curve is chosen so that buyers will purchase z2 = ¢;. We again assume that all
levels of x are purchased at time 2 and that the distribution of buyers over c is triangular.

The prices are now defined as

P® = exp(a + blog(ci) +7), | e<c<c  (24.94)
Pg = exp(a + blog(cexp(y/(b - 1)))), t<e<c  (249B)
Py = exp(a + blog(ciexp(v/(b - 1)))), P <<t (2490)
Py, = exp(a + blog(c® exp(v/(b — 1)))), e<c <  (24.9D)

P} = exp(a + blog(cexp(v/(b— 1)))) — exp(a + blog(ci) + 7)*

zb;?:exp('y/(b — 1)) + exp(a + blog(c:) +7)b, t<ci<c  (24.9E)
Py = exp(a + blog(ci exp(v/(b —1)))) — exp(a + blog(ci) + 7)*

gc,' exp(7/(b — 1)) + exp(a + blog(ci) + 7)b, L<ci<é (24.9F)
P} = exp(a + blog(c” exp(v/(b — 1)))) ~ exp(a + blog(ci) + 7)*

gco exp(v/(b — 1)) + exp(a + blog(ci) + 7)b, e<c<d  (24.90)

where P?, P and P* were defined previously. The G and L subscripts are as before and the

M subscript represents buyers with ¢® < ¢; < . The index is defined as

Co *
IR=/ B 2 dc
£

N S m pPr 2c
M G d
0ot +/c° PO c*mdc+/5 c+

PO c*m
e P* 2(ct _c)
€k S ¢ 2.4.1
/m Po c“(c*—m)dc’ c<m  (24.10A4)
& pe m p* ¢ p* *
IR= PL 2C dc+ PM2CdC+/ M 2(0 C) dc+

e Plc'm o Poc, m PO c*(c* —m)

¢ P% 2(c* - ¢) . .
¢ POc*(ct—m)
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The prices and index were found in the same fashion as we found the prices and index

for the forward case. Examples 3 and 4 examine the effects of changing m and y,.

Example 3:Assume that a = 1, b=4, v = —2, uy = 1, and p2 = 10. Given the setup just
described, if m increases, then the growth rate of the reverse benefit index will increase and

buyers will be worse off at time 1.

Table 2.4.3 shows that as the distribution of buyers becomes more skewed to the left,
buyers on average will be worse off in the previous time period (as seen by a higher index

number at time 1). This in turn implies a higher growth rate between time periods.

This result comes as a consequence of ¢ being fixed. With ¢ fixed, m increasing implies
that more buyers will be constrained at p; at time 1 (instead of being able to optimize at
z > py which was unavailable). This result is similar to what we saw with the forward
index. In both instances, the changing distribution affected the number of buyers who were

constrained and the number who could take advantage of extensions in the product space.

Hedonic indexes are unable to take into consideration this changing distribution. Tables
2.4.1 and 2.4.3 clearly show that changing this distribution affects the growth rate of the index
and the average benefits buyers receive. Since a hedonic index does not account for this, it is
likely that the hedonic index misrepresents the true benefits from improvements in product
technology. However, the degree of misrepresentation is actually an empirical question and it
must be investigated whether hedonic indexes come “close” to benefit indexes. The evidence
from this example suggests that the bias would be for the hedonic index to overstate the
true benefits to buyers from improvements in product technology, but the extent of the bias
is unclear at this point. We will consider this issue in the next chapter when we look at the

performance of various indexes in the mainframe computer industry.

Example 4:Assume that e = 1, b = 4, v = -2, pug = 10 and m = 5. Given the current
setup, if p1 increases, then the reverse benefit index will have a lower growth rate and buyers
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will be better off at time 1.

Table 2.4.4 shows that as ;1 increases, the reverse index at time 1 takes on smaller values.
This implies that buyers at time 1 are better off as x; increases. While this point seems
obvious, we found earlier that the forward index recorded less benefit when u; increased.
The result here implies that the reverse index may be more appropriate than the forward
index for computing a benefit index. In theory, both indexes should be computable; however,
as pointed out earlier, there may be a problem with computing P*. So, while the forward
index is the most obvious to compute, it may be quite far from the reverse index as a result
of using a changing P*. The important empirical question is: How close is the forward index

to the reverse index? We will address this question in the next chapter.

The final point to note about these examples is that each benefit index computed shows
a slower growth rate than the hedonic index. This is important because the hedonic is the
index that is typically computed. The examples here show that the hedonic index will tend
to overstate the true benefits to buyers from product innovation. This is in contrast to the
results obtained by Trajtenberg (1990) who used data on computed tomography scanners.
His results and discussion seem to imply that a benefit index should decline at a faster
rate than a hedonic index. Our index is not directly comparable to his since he allows for
“filling-in” the product space. However, the discrepancy between his results and ours can
be described by looking at some simple features of the datasets. The CT scanner industry
has the majority of buyers purchasing the highest level of characteristics available and the
technology improving by a large degree, whereas we find exactly the opposite in computers
with most buyers purchasing low levels of characteristics and only small increases in the
levels of available characteristics. Since our index declines at a faster rate as buyers shift
toward higher levels of characteristics, we would expect that moving all buyers to the highest
level of characteristic and extending the product space by a large degree would result in our
index declining at a higher rate than the hedonic index.
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This section has compared a hedonic index with our forward and reverse benefit index.
First, we found evidence to support the earlier claim that a benefit index will show a lower
growth rate than a hedonic index. Second, we discovered a problem with our forward index
which could lead it to provide incorrect results. Third, we found that the benefit index
is sensitive to the distribution of buyers across the product space. We noted that this is
a factor which the hedonic index cannot incorporate. Finally, we found that the benefit
index is sensitive to extensions in the product space. Again, this is a factor which is not

incorporated by a hedonic index.

2.5 CONCLUSION

This chapter has presented an analytical and numerical comparison of hedonic indexes
and benefit indexes. We have shown that a benefit index which accounts for actual product
purchases and extensions in the product space, as measured by previously unavailable prod-
uct levels, will have a lower growth rate than a hedonic index in most cases. This is because
buyers have a diminishing willingness to pay for higher product quality, i.e. as the level of
product quality increases, buyers are willing to pay less for each unit of quality. This in turn

implies that buyers benefit by less than a hedonic index would indicate.

We have also shown that in contrast to a hedonic index, our benefit index accounts for
factors such as the distribution of buyers across the product space and extensions in the
product space. These factors are important because buyers located in different portions of
the product space do not benefit equally from improvements in product technology. The

importance of these factors was demonstrated in section 2.4 in our numerical example.

Finally, we have shown that our ‘forward’ and ‘reverse’ benefit indexes may lead to quite
different results regarding the benefits to buyers between two (or more) time periods. This
occurs mainly because the forward index has a denominator which changes over time. If
average product price per performance has fallen a great deal between time periods and/or
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the level of quality purchased at the initial time period is small, then the buyer may only be
willing to pay a negative price. This price is obviously undefined and forced us to compute
our forward index allowing our buyers base price to change over time. While we conclude
that this is an obvious pitfall to our forward index, the important question concerns how
close the forward index is to the (correct) reverse index. This question is an empirical one,
and we will address it empirically in the next chapter using data on the mainframe computer

industry from 1985-1991.
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2.6 TABLES

24.1
Effect of Changing m on Forward Index
m I 4
0.10 51.29
0.20 50.99
0.30 50.62
0.40 50.11
0.50 49.41
0.60 48.38
0.70 47.11
0.80 45.77
0.90 44.46
Table 2.4.2
Effect of Changing 2 on Forward Index
2 I
2.00 34.09
3.00 43.52
4.00 49.41
5.00 52.28
6.00 53.39
7.00 53.62
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Table 2.4.3
Effect of Changing m on Reverse Index
m h
1.00 288.37
2.00 293.67
3.00 300.09
4.00 306.44
5.00 312.12
6.00 317.09
7.00 321.42
8.00 325.23
9.00 328.61
Table 2.4.4
Effect of Changing p1 on Reverse Index
B1 I
1.00 312.12
1.50 284.49
2.00 266.17
2.50 255.35
3.00 249.75
3.50 247.20
4.00 246.25
4.50 246.00
5.00 245.98
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Figure 2.2.2
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Figure 2.3.1
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Figure 2.3.2
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Figure 2.3.3
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CHAPTER 3
AN EMPIRICAL COMPARISON OF THE INDEXES

3.1 INTRODUCTION

Since the mid 1960s researchers have been computing hedonic price indexes to measure
the quality-adjusted price changes that have been taking place in mainframe computers. This
research shows that “price per performance” in mainframe computers has fallen rapidly over
the past 30 years (Triplett 1989). The traditional method for computing hedonic indexes
focuses on the average price change for mainframe computers holding product characteris-
tics constant. These methods address the question: How much has price per unit of quality
declined in mainframe computers over time? While the answer is of interest, a more interest-
ing question is: How much do buyers value improvements in computer technology? In this
chapter we propose a price index that accounts for the benefits to buyers from improvements

in mainframe computer technology.

Such indexes are difficult to produce because buyers receive different benefits from tech-
nical change and an index must aggregate over these different experiences. Our index em-
phasizes two factors. First, we directly address the “repackaging” problem, i.e., a single
mainframe is not equivalent to, but superior to, two mainframe computers embodying one-
half the characteristics. This permits us to explicitly account for “extensions in the product
space” that result from technical change, thus we measure the benefits buyers receive from
moving to previously infeasible portions of the product space. Second, we allow for dimin-
ishing marginal utility in product characteristics. While this is a natural assumption for
an economic analysis, it contrasts sharply with approaches used previously, as explained
below. We expect our index to differ from a hedonic because traditional hedonic methods
because the latter do not incorporate these factors, measuring only the change in the inter-
cept between different hedonic surfaces. The interesting empirical issue concerns whether

35

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com



our utility-based index differs from a traditional hedonic, and if so, by how much.

The data set that we use differs from data used in previous studies. We observe 21,268
acquisitions of mainframe computers from 1985 to 1991 as surveyed by the Computer In-
telligence Corporation. We observe characteristics of the purchases being made and the
characteristics of the firms making those purchases. Previous work only had data on the set
of systems available for sale. Our more detailed data allows us to measure the benefits each
buyer receives from technological change, rather than simply measuring the displacement of

the hedonic price-quality relationship.

We show that our index declines at a much slower, although still quite fast, rate than the
hedonic index, implying that hedonic methods overstate the true benefits buyers receive from
improving technology in mainframe computers. The results have a number of implications.
First, our results differ from those of Trajtenberg (1990). His work on CT-scanners implied
that utility based indexes would account for more technological innovation than hedonic
indexes and thus would decline at a faster rate. We find the opposite, and argue that this
occurs because all buyers have a declining marginal bid for characteristics, which outweighs
the benefits received bya few from extensions in the product space. Second, the rate of
decline in the utility index depends on the set of buyers used to compute the index. Hedonic
methods are unable to account for this distribution of buyers at all. We find that weighting
by historically later sets of buyers tends to lead to faster rates of decline in our utility-based
index. We explain why in the text. Third, these results imply that the U.S. Government
indexes, computed using traditional hedonic methods, may be inadequately measuring the
benefits associated with quality-adjusted price changes. This is because hedonic methods do
not take into consideration how buyers value the set of computers actually being purchased,
but instead only take into consideration the price per unit of characteristic of the set of

computers available for sale.

The results in this chapter are obtained using a special functional form—one that allows
easy computation. We are aware that our results may be sensitive to that choice. However,
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we do not fully explore this issue in this chapter since doing so detracts from our main point.
We will pursue it in the next.

The next section of this chapter will describe the methodology we will follow to arrive
at our estimated price index. In addition we will describe the procedure for computing a
traditional hedonic index, and point out the differences between the two methods as we go
along. The third section will describe the dataset to be used for this analysis. Our ability
to employ our methodology is a result of the detailed dataset we have on the characteristics
and behavior of buyers in the mainframe computer market. This type of data has not been
analyzed for this purpose previously and allows us to move forward in new directions. The
fourth section describes the specific models that we look at and gives the main results of
the paper. It is here that we compute our utility-based, “cost-of-living” index along with a
traditional hedonic index and point out the disparity between the two. In section 5 we give

concluding remarks and directions for later research.

3.2 METHODOLOGY

3.2.1 Review

Beginning in 1967 with Chow’s pioneering work on the growth in demand for computer
services, many authors have looked at the question of how best to measure technologi-
cal change in computers. Essentially all of this work has used hedonic methods to derive
quality-adjusted price indexes for various computer components. These methods were ac-
cepted in 1986 by the U.S. Department of Commerce, Bureau of Economic Analysis, for
determination of the official computer price index—an index that was previously assumed
to be 100 over the entire 1953-1985 time period (Berndt,1991,p.123). The consensus from
hedonic studies on improvements in the mainframe computer industry is that over the last
30 years, improvements in price per performance occurred at roughly 15 to 25 percent per
year (Triplett 1989).
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The most frequently employed method for obtaining these indexes is the dummy variable

method. This method estimates

T
9(Pi) = Bo+ ) Bih(zijt) + > BeDit +&i (3.2.1)
j t=2

where 2 indexes the observations, j indexes the computer characteristics respresented by z,
t indexes time and ¢ and h are typically taken to be logafithmic functions; however, other
choices have been employed.? The D; are time dummy variables and the f; coefficients
estimate the change in price not accounted for by changes in the characteristics. Assuming
we take g and h as matural logarithms, the index is computed by setting the index in the
excluded year to 100 and exponentiating the estimated B; coefficients.?

Trajtenberg (1990) argued that innovations should be measured in terms of their value to
users, following a long literature of cost-of-living indexes and welfare economics of innovation.
He outlined an approach based on hedonic price functions and discrete choice models. The
main idea was to measure the benefits buyers received from facing alternative choice sets.
This argument emphasized two factors—the difference between buyer location and product
location in the product space, and extensions in the product space.

In estimating demand for characteristics he ran into the problem of upward sloping
demand curves. He argued that this came as a result of a correlation between unobserved
quality characteristics and price. In a logit setting, this problem has no solution without
explicit modeling of the random error (See Berry, Levinsohn & Pakes (1993). We expect
a similar scenario with mainframe computers as it has often been argued that there exist
many unmeasureable characteristics.!® For this reason, we chose not to follow the procedure

described by Trajtenberg.

8 In Triplett’s (1989) survey of research on computers, 17 of the 23 papers discussed chose this log-log
specification. Only 4 of these 17 papers tested this functional form against any others. Two papers chose a
linear form and two chose a log-linear form.

9 exp(ﬁg) is a biased estimate of exp(:), implying that the index is also biased. One correction is to add
one-half of the coefficient’s variance to the estimated coefficient (Triplett 1989).

10 See for example Berndt (1991)
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We employ an alternative approach, estimating demand directly from the estimated
hedonic price function as in Rosen (1974), and using those estimates to measure surplus
changes associated with technological change. This methodology has the advantage that its
strengths and weaknesses are well known (e.g. Brown and Rosen 1982, Diamond and Smith
1985, Bartik 1987 and Epple 1987). In addition, it is well suited for directly computing the
effects of the distribution of demand on the differences between a traditional hedonic index
and a utility based index. Therefore, we continue in the next section to review Rosen (1974)

and to discuss the issues surrounding his proposed methodology.

3.2.2 Rosen (1974)

Rosen (1974) suggested an econometric methodology to identify the demand and sup-
ply parameters in a differentiated product market. Rosen observed that a hedonic price
function represents a locus of equilibrium transactions between buyers and sellers. This
surface represents an upper envelope of buyers’ bid functions and a lower envelope of sell-
ers’ offer functions (see Figure 3.2.1). Transactions occur where these bid and offer curves
are tangent. As a consequence, the marginal hedonic price function represents the locus
of intersections between buyers’ marginal bid and sellers’ marginal offer curves (see Figure
3.2.2). The questions is: how can one identify these marginal bid and/or marginal offer

curves econometrically? Rosen suggested estimating the following system of equations

pi(z) = Fi(z1,...,20,Y1) Demand (3.2.2)

pj(z) = G’(z1,...,2a,Y2)  Supply. (3.2.3)

Here, p; represents the estimated marginal price for characteristic j, defined as the first
derivative of the hedonic function at the observed levels of characteristics, and z; represents
the observed levels of characteristics (the same ones used when estimating the hedonic surface
in (3.2.1)). Because of the nonlinearity of the hedonic surface, seen in Figure 3.2.1, buyers
and suppliers simultaneously choose both the levels of characteristics and the marginal prices
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for those characteristics (given by the slope of the hedonic surface). This implies that the
system given by (3.2.2) and (3.2.3) has 2n equations and 2n endogenous variables (where n
represents the number of characteristics). Y; and Y; represent exogenous demand and supply
shift variables. These are simply characteristics of corresponding buyers and suppliers. Given
this setup, Rosen suggested that this was a typical identification problem to be estimated
by some simultaneous equations method.

Since this work, a great deal of discussion has refined the suggested methodology, in-
cluding Brown & Rosen (1982), Diamond & Smith (1985), Bartik (1987) and Epple (1987),
as well as others. Each has argued that this is not a typical identification problem, and
each has suggested alternatives to the original methodology. In the next section, we develop
the methodology we will follow to obtain estimates of demand, point out the identification

problems these other papers have addressed and employ the solutions they have proposed.

3.2.3 Estimating Demand

Following the suggestions of Brown and Rosen (1982) and Diamond and Smith (1985) we
make two initial assumptions. First, we assume that the demand parameters are the same for
all buyers and do not change over time. Each buyer’s demand is differentiated only by a set
of buyer characteristics used to describe the heterogeneity among buyers. Second, we assume
that supply is exogenous to buyers and that demand can be estimated without estimating
supply. Diamond and Smith argued that this was reasonable since the source of simultaneity
in this model does not arise between a buyer and a computer system. Instead, movements
by buyers are to new systems rather than along the offer curve of the same system.!! This
implies buyers take the hedonic price function as exogenous and simply locate themselves
on it.

We begin by estimating a hedonic price function for each year which is exogenous to

each buyer. These functions take the form

11 This follows from the typical assumption that each supplier produces only one product and each buyer
purchases only one. We assume that there exists an offer curve for each system rather than each supplier.
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9t(Pit) = he(z1ity .- -, Tnit,€it) t=1,...,T (3.2.4)
where z; represents the jth computer characteristic and g and A are some functions which
may change over time. € represents the error term. We estimate (3.2.4) separately for each
year.!2

The next step is to differentiate (3.2.4) with respect to each of the z;’s to obtain n
marginal price functions for each year. Each of these functions is a function of the n computer
characteristics. Denote these functions by mp;j;. With these mp;;; functions we compute
estimated marginal prices for the characteristics by evaluating the mp;;; at the observed levels
of characteristics to obtain 72p;;s. This yields n vectors of estimated marginal prices for each

year. We combine these vectors to obtain a marginal price vector for each characteristic.

The next step is to estimate demand of the form

mpi; = f(1iy. .., Zni, Biy Vi) (3.2.5)
Because in general the z;; in (3.2.5) are correlated with »;, we must provide instrumental
variables for the estimation of (3.2.5) (Epple 1987, Bartik 1987). Plausible instruments, as
described by Bartik (1987), should be correlated with the choice of computer characteristics
but uncorrelated with unobserved tastes.
B represents buyer characteristics and describes the heterogeneity among buyers. While
the shape of each individual demand curve is the same as any other, the B portion of (3.2.5)
will shift the demand curves. The location of any demand curve is described completely by
B.
At this point a number of issues arise. Recall that in the first step we estimated (3.2.4)
separately for each year t. Brown and Rosen (1982) pointed out that if (3.2.4) were esti-

mated as a pooled regression with all years included, estimation of (3.2.5) may not yield

12 As stated earlier, g is usually taken to be logarithmic and A as the sum of the logarithms of the z;'s.
However, we will not attempt to use this form in the computation of our utility index because of the
computational difficulties that will arise in attempting to solve a system of nonlinear equations.
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any new information since it is a function of the same n characteristics. For example, if
(3.2.4) were quadratic and (3.2.5) linear, then the marginal price functions, mpj, would be
linear functions of the z;. Thus, since (3.2.5) is also linear and a function of the same n
characteristics, there would be nothing to estimate. The coefficients in (3.2.5) could be de-
termined directly from the coefficients in (3.2.4). Brown and Rosen suggested that one way
around this without imposing any functional form restrictions would be to estimate (3.2.4)
separately for each market (here distinguished by time). This would result in a different
marginal price function for each year and, assuming the demand function was constant over
time, a meaningful estimate in (3.2.5). Of course there needs to be a significant difference
between the estimates in (3.2.4) for this to hold true. This suggestion was reiterated by

Diamond and Smith (1985) and employed by Bartik (1987).

One of our main concerns at this point is the requirement that demand parameters
remain constant over time for all buyers. While the assumption is being employed in order
to identify demand parameters, it is not clear that this is really plausible for this industry.
However, the time period we are looking at is during a mature stage of the mainframe
computer industry. Thus, it could be argued that buyers are aware of the relative values of
the characteristics throughout the entire time frame and that these values do not change.
In other words, buyers know how important computing speed is relative to memory, and the
relative valuation of the two does not vary during the period. We intend to investigate this

assumption further in future work.

Another issue concerns estimating supply. We have said that we will assume supply is
exogenous to buyers. However, this is an industry clearly dominated by a few large firms,
and it is possible that they influence the shape and location of the hedonic surface. This
would then imply that changes we see in a computed index are not solely attributable to
technological change but instead to a combination of technological change and firm market
power. Since our goal is to measure the benefits that accrue to buyers from facing different
choice sets, and not the sources of those benefits, this fact should have little affect on our
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results. An additional point to make regarding this is that Diamond and Smith (1985) argue
that either side of the market can be estimated without regard to the other side. This follows
from the assumption that buyers do not move along a system’s offer curve or systems along
buyers’ bid curves, but instead movements are along the market price function, which implies
movements to new systems or new buyers. If we later incorporate supplier behavior, as we

hope to do in the future, we will reconsider our specification.

Having pointed out these caveats, we proceed to estimate (3.2.5) separately for each
characteristic using the estimated marginal prices as the regressor. This will yield n separate

demand equations which can be used to compute a price index.

3.2.4 Computing a Price Index

Once we have estimated demand, we are ready to compute a utility-adjusted price index.
Our procedure mirrors Trajtenberg’s (1990) idea of measuring quality change by the “hy-
pothetical price change that would have resulted in the same welfare effect” (p 31). First,
let us summarize the entire procedure. The index is computed by taking the buyers in each
year, t, and placing them into consecutive later years, t + 1,...,T, to determine what set of
characteristics they would have purchased had they actually faced a later year’s set of choices
as represented by the hedonic price function. The new set of characteristics is computed by
finding the point at which each buyer’s demand curve intersects the marginal hedonic price
functions for the later year. We then compute the price that this new set of characteristics
would have cost in year ¢+ k. Call this a “counterfactual price.” We then compute the price
that this set of characteristics would have cost in year ¢, while holding the buyer’s utility
constant at the level observed in year ¢. Call this a “constant-utility price.” The ratio of
these two prices, the constant-utility price and the counter-factual price, is the index for
this buyer. We then compute a weighted average of all individual’s indexes using either the
expenditure observed in year t or the constant-utility price as the weights. This is depicted
in Figure 3.2.3 for a single individual and a single computer characteristic.
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We now describe this more formally. This model is similar to a consumer’s utility max-

imization problem. Here we have a buyer solving the problem:

max u(z,P) st. P = Hi(z) (3.2.6)

where u represents the buyer’s utility from purchasing characteristics z for price P, H, is the
hedonic price function at time ¢, z is a vector of product characteristics and P is the product
price. H is assumed to be twice continuously differentiable with dH/dz > 0. u is chosen
such that uz > 0, u;z < 0 and up < 0. Solving this problem yields a solution (z?, P?). We
assume that u is additively seperable in characteristcs, although this could be relaxed. The

first order condition for (3.2.6),

Vu(z, Hi(z)) =0, (3.2.7)
implies an optimal choice for z at time ¢, which we will call z{. Given this, we define P} =
Hy(z]) and u® = u(z}, P?). Using (3.2.7), but substituting H,,x(z) for Hy(z), we obtain an
optimal solution for z at time ¢ + k, which we call ;. We then define Pyx = Hypr(514k)
and GUgqr = u(Tyqr, Pt+k)- Finally, we define P}, as the P that satisfies u(Z44x, P) = ul.

In words, P? is the observed price the buyer paid for the observed set of characteristics
at time t, Pt+k is the counter-factual price the buyer would pay for the counter-factual set
of characteristics when facing the hedonic surface at time ¢ + k and P}, is the constant-
utility price the buyer would pay to purchase the counter-factual set of characteristics while
remaining at the level of utility observed at time ¢, u®. u® is the level of utility the buyer
achieved at time ¢, and 1 is the level of utility the buyer would achieve at time ¢+ k assuming
demand is constant over time.

To compute an index for a single buyer, we need to know the level of characteristics that
would have been purchased had the buyer actually faced H; i rather than H; as shown in
Figure 3.2.3. This is given by &, defined above. At time ¢+ k this bundle of characteristics
will cost Pt+k and the buyer will achieve a level of u equal to 4.
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Next, we need to determine the price Z;;; would have cost the buyer had Z;y; been
purchased instead of z{ in year t holding the buyer on the same bid curve, u®. The reason
that we can hold 2 constant when moving from time ¢+ k back to time is a consequence of
our assumption that demand remains constant over time. We actually shift H,y; vertically

until it is tangent to u®.

Since demand does not change over time, when we shift Hy
parallel, it will be tangent to u® at the same z that it was tangent to {iz4x, namely 4.
Thus we only need to find the price of #;,t on the bid curve of the observed year, u®. This
is Py, ; defined above and shown in Figure 3.2.3.

Unfortunately, the bid curve u°

is unobserved. All we know is the observed price, PY.
However, the demand curve (3.2.5) is actually an estimate of the slope of the marginal bid
curve, u”. Therefore, if we integrate the demand function between =¥ and %y, this gives
us the difference between P{ and P} ' - 1f we then add P? to this amount, this gives us the
price we are looking for—FPy, ;.

Now, we set the base year for our index to the year the buyer is observed. If ¢ is the year
we observe the buyer, then we compute A

Ik Pigx — Ptk

= 3.2.8
I Pirik ( )

where ¢ represents the observation year and ¢ + k some later year. We compute this index
for each buyer observed in year t.

The final step is to aggregate these individual indexes into a single index. We choose to
create a weighted average of these individual indexes, using either P? or P} ek @S the weights.

Thus, we compute both

E PS Puﬁk_ it+k

1- —,and (3.2.94)
E,
k tt k PlH'k
:t+ tt-i-k (3 2 gB)
zi it-*-k
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P,
- i itk (3.2.9C)
z u+k

These choices of weights allow the index to account for the distribution of buyers across the
product space. Notice that they also represent a ratio of surplus to expenditure. It turns
out that with our data, the difference between using P and P} ik as weights is minimal. We
compute an index of this type for each year ¢ from ¢ = 1 through ¢ = T’ — 1 with year T as
100 in each index. Doing this allows us to examine how the index changes as the distribution
of buyers changes.!®

Up to this point we have only considered the benefits received from buyers in year ¢
when given the alternative choice set at time ¢+ k. However, in an analagous fashion, we can
measure the benefits received from buyers in year ¢t when given the alternative choice set at
time ¢ —k. P is still defined as the observed price for the observed set of characteristics, and
P,_y is still defined as the counter-factual price for the counter-factual set of characteristics.
P;* will now be defined as the P that solves u(z?, P) = 4, or the price that the buyer would
pay to purchase the observed set of characteristics while remaining on the counter-factual

bid curve. The index for an individual buyer, using P{ as the weight, is computed as

Z P(: t Ie th
]
o
_ TPy
iPY

We will call the index computed in this fashion the “reverse index.”!* Again notice that this

1+ (3.2.104)

(3.2.10B)

is a ratio of surplus to expenditure.
There are two potential problems with computing our counter-factual levels of charac-

teristics. First, it is possible that a buyer will choose a counter-factual set of characteristics

13 Note that in computing this index we have compared utility levels at the counterfactual level of charac-
teristics. Since our bid curve is concave, if we compared utility levels at the observed level of characteristics
we might be confronted with a negative counterfactual price. We avoid this problem by restricting our
attention to the counterfactual level of characteristics.

14 ‘We will call the index described earlier where buyers go from ¢ to ¢ + k the “forward index.”
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which is larger than the largest system that was available at time ¢ — k. When this occurs,
we give the buyer the largest set of characteristics which was available at time t — k. We
refer to this as “buyers hitting a corner.” Second, depending on the slope and location of
the demand curve, it is possible that a buyer will choose to purchase a negative set of char-
acteristics. When this occurs, we assume the buyer would no longer be in this market, but
would instead be in a market for some smaller computer, say a minicomputer. In this case,
we compute the utility level which would leave the buyer indifferent between being in the
mainframe market and some alternative market. This utility level occurs where H;_ and
are tangent at zero.

The procedure described here yields an index which adjusts for quality changes and at
the same time takes into account the buyer’s demand for characteristics. In addition, the
final index weights each buyer by either their observed level of expenditure or by a constant-
utility level of expenditure which will then allow the index to account for the distribution
of buyers in the product space. A hedonic index computed by the dummy variable method
does not account for changes in the marginal utility of characteristics, nor does it account
for the distribution of buyers. Instead it looks only at the rate at which the intercept of
the hedonic surface is changing. Based on these differences it is not clear whether our index
should have a higher or lower growth rate. We will compare indexes computed using both

methods in our Results section.
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3.2.5 Figures

Figure 3.2.1
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Figure 3.2.2
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Figure 3.2.3
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3.3 DATA

The data to be used for this analysis is a subset of the Computer Installation Data
File kept by the Computer Intelligence Corporation (CIC). The installation file contains
information on over 70,000 computer installations and 140,000 computer systems in the
United States. All information on the file is collected directly from the users through mail

surveys and telephone follow-ups and it is updated on a continuous basis.

Information on the file is categorized as being either site data or system data. Site data
refers to those data elements concerning the company at which a computer system is located.
“System” is used as a collective term rather than meaning a computer system itself. System
data includes data on the mainframe, software and peripheral equipment at the computer
installation. Each Computer Installation Data File record contains both site data and system

data.

CIC prepared a database containing their complete records for every site in the United
States with a medium to large general purpose computer system for every year from 1984
to 1991. This time period was selected because CIC could guarantee the data’s historical

accuracy and completeness.

This particular subset of CICs data files is extraordinarily rich in detail. CIC provides
data on over 44,000 medium to large systems in 1984 and over 58,000 by 1991. Each year
provides data on over 14,000 sites that use a medium to large computer system. Each of
those 14,000 records includes the name and address of the private company (and parent)
at which the system is located, as well as broad information about the company, such as
the (four digit) SIC associated with the site, the number of employees and the amount of
revenue. Unfortunately, some of the variables are not reported for the entire time period,

making use of the entire data set a difficult task.

More importantly, though, the files contain detailed descriptions of every medium to large
system and its use at the site. Specific information includes the system name and model, the
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amount of memory, the amount of peripheral equipment used, the primary language used,
the likely market value of the system, the method by which the system was acquired and at
what level such acquisition decisions are made. The file also provides information about the
total MIPS and DASD, as well as the number of programmers at the site.

Since our interest here is the effect of new technology on price index computation, we
look only at the acquisitions of new computer systems.!®. This is similar to the previous
research done in this area where researchers typically use the set of systems available for sale
to perform their analysis.

The acquisitions data set was generated from the site data. The site data included a
variable for each system indicating whether it was a new acquisition or not. This encom-
passed 69,179 observations from 1984-1991. In order to perform our analysis we require data
on the site from the previous year. Therefore, we removed all observations for which there
was no site information the previous year. There were now 42,221 observations. Finally, we
chose to restrict our attention to mainframes, so we excluded all observations which were
not. This brought the dataset to 27,217 observations. The reason for choosing mainframes
was simply because they have been the major focus of previous work.

The final set of data we needed for our analysis was system characteristics. CIC publishes
a guide called the Computer Systems Report Users Guide which contains information on all
systems known to them. The Guide contains the system name and a list of characteristics
including MIPS, minimum memory, maximum memory, KVA (kilovolt-amperes!®) ratings
and others. To complete the acquisitions dataset we simply matched the system names with
those in the Guide and merged the characteristics with the list of acquisitions. Due to name
discrepancies and the inclusion of some non-mainframe acquisitions in the dataset, the size
of the data was narrowed further to 21,268 observations. This is the dataset used in the

analysis.

15 Oliner (1992) examines the second-hand market for a sample of IBM systems.

16 This is the electrical measurement used by the Uninteruptible Power Systems vendors to rate their
system’s capacity
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In the remainder of this section we give definitions for the different variables used, as well

as descriptive statistics. More detailed descriptive statistics can be found in the Appendix.

3.3.1 Price

The system price we use here is provided by CIC and is defined as the “estimated value
of a ‘typical’ configuration if purchased today.” The drawback to this is that all acquisitions
of the same system will get the same price associated with them regardless of the true
configuration which was purchased. “Typical” is defined by CIC as “an average size system
with a normal compliment of peripherals and terminals.” This is the same type of price that
previous work has used. The computer characteristics to be described later are associated
with systems in the same manner, so that all systems of the same type have the same price
and the same characteristics during a given year. Fortunately, prices for the same system
change over time, so there is variation in both the cross section and time series. While this
is not the most desireable setup, it is consistent, and is virtually the same as what has been

used in the hedonic literature.

We transformed the price data by adjusting for inflation using the Producer Price Index
each year to get a real price. This was done so that we would be measuring technological
change with inflation factored out rather than measuring the two simultaneously. Table

3.3.1 provides descriptive statistics for the transformed price data (measure in hundreds of

dollars).

3.3.2 Computer Characteristics

The mainframe characteristics we choose to use are minimum memory, maximum mem-
ory and MIPS. Minimum and maximum memory are the minimum and maximum amounts
of main storage supported on the system. MIPS is a measure of the speed of the mainframe

measured in millions of instructions per second.

Main memory is valued for its storage use to allow for quicker access to software and
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data. Its measurement in bytes is standard in the industry so that different systems’ memory
may be compared in a straightforward manner. Most previous studies have often used
both the minimum and maximum memory. This was done either to account for the lack of
information as to which size of memory went with the recorded price, or to avoid the influence
of different pricing schemes for the low-end models when different prices are available for
different memory sizes (see Triplett (1989) and Dulberger (1989)). For a description of
the ‘pricing schemes’ see Phister (1979). We use both minimum and maximum memory
because we do not possess a price for different memory configurations for each system. Tables

3.3.2 and 3.3.3 give descriptive statistics for minimun and maximum memory measured in

kilobytes.

While “speed” is a characteristic which can directly measure the effectiveness of a system,
the measurement of speed is not nearly as straightforward as the measurement of memory.
No less than five measures of speed, including addition time, multiplication time, memory
cycle time, MIPS and KOPS (thousands of instructions per second) have been introduced
as independent variables in the specification of the hedonic function. For definitions of these
measures and others see Triplett (1989). The most recent studies prefer to use MIPS because
it combines the speeds of many instructions and weights each instruction by the relative fre-
quency of that instruction in the job. If the job is representative of the jobs which will be
performed by the system, then this weighted measure computes some sort of “expected”
speed. However, since typical jobs vary widely across processors, comparability across pro-
cessors is difficult (see Triplett). For this reason, Dulberger (1989) chose to exclude all data
except IBM and plug-compatible processors for which equivalent MIPS measures were avail-
able. Triplett’s reply to this choice is that “... a non-comparability that may be disastrous
for machine selection purposes may yet be acceptable for an economic measurement, in that
the measurement error may be randomly distributed around the true hedonic regression line”
(Triplett p.149). We choose to include all acquisitions, not discriminating on the basis of
comparable MIPS. Later, for comparison purposes, we will perform the same exercise using
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only IBM and PCM processors. Table 3.3.4 provides descriptive statistics for MIPS.

Another variable we feel is important is reliability. Unfortunately, it is not clear how one
would go about measuring this. However, in this era, the technology is more mature than
in previous eras and reliability is probably not changing much over time or across systems.
This would not necessarily be the case if we were comparing 1970 systems with 1990 systems.
Berndt (1991) discusses the use of reliability as a computer characteristic and the problem

of omitted variables in hedonic estimates. For a list of variables used in previous research

see Triplett (1989).

3.3.3 Buyer Characteristics

The buyer characteristics are the variables used in the estimation of the demand functions
which describe the heterogeneity among buyers. We chose seven categories of variables which
were either available, or could be generated, from the CIC data. Each of the variables is
lagged ome period from the date of observation to avoid problems with these variables being
endogenous to the choice of purchasing a new mainframe computer system. These variables
include dummy variables for various SIC groupings, a dummy variable for whether or not
the site owned an IBM system, the estimated purchase value of installed systems at the site,
the MIPS rating of the system at the site with the largest MIPS rating, the total MIPS for
all installed systems at the site, the total KVA rating for all installed systems at the site and
the technical age of the youngest system owned during the previous year. Tables 3.3.5 and

3.3.6-3.3.12 give definitions and descriptive statistics for the buyer characteristics.

3.3.4 Instrumental Variables

Because in general the z’s in the demand estimation are correlated with the error term in
that equation (Bartik 1987, Epple 1987), we need to estimate that equation by instrumental
variables. Bartik (1987) performs a similar exercise using housing data. The instruments
should be variables which affect the choice of characteristics but do not affect unobserved
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tastes. The variables we use are time dummy variables, region dummy variables, an SMSA
dummy variable and characteristics of the closest systems in characteristics space as mea-

sured by the Mahalanobis distance between systems. This distance is defined as

(zo — :c.')TE_l(a:o - z;)

where zp represents the characteristics of the system, z; represents the characteristics of all
systems except zo and ¥ represents the covariance matrix of the variables minimum memory,
maximum memory and MIPS.!” Each of these variables affects the marginal prices paid for
computer characteristics. However, assuming that tastes do not change over time or across
regions and that tastes are unaffected by whether or not the buyer resides in an SMSA,
these variables are uncorrelated with buyers’ tastes, making them appropriate instruments.
Definitions of these variables are given in Table 3.3.13.

The type of data used here is different than the type of data used in previous analyses.
This data is at the buyer!® level and describes the acquisitions as well as information about
the buyers making the acquisitions. Previous work had data on the available systems, their
characteristics and their prices. Because of the differences in the data, we are able to address
the question of the amount of technological change taking place in a different manner. We
could still perform the analysis as it has been done in the past, and we do so for comparison
purposes, but it is important to see that there is a fundamental difference. The analysis
here computes a utility based hedonic index because it takes into account the location of
the buyers on the hedonic surface and what their demand for characteristics might look like.
This method looks not only at technological change, but also the valuation of that change to
buyers. Improvements which might make a regular hedonic index decline quickly may not

be valued by buyers and may make a utility based index fall more slowly, or vice versa.

17 The idea is that neighboring systems provide information about the costs of production without saying
much about buyer demand.

18 The buyers are private firms, educational institutions and government organizations
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3.3.5 Tables

Table 3.3.1
Descriptive Statistics for Price
Year Minimum Median Mean Maximum Std. Dev.
1985 0.00 390.70 1033.00 9200.00 1491.11
1986 0.00 656.30 1833.00 23910.00 2983.82
1987 0.00 608.80 1808.00 31740.00 3050.31
1988 0.00 734.90 2284.00 43990.00 3828.61
1989 0.00 707.10 2476.00 44790.00 4177.20
1990 0.00 821.80 3039.00 40680.00 5158.61
1991 0.00 777.40 2925.00 34740.00 5092.07
Total 0.00 638.70 2104.00 44790.00 3716.81
Table 3.3.2
Descriptive Statistics for Minimum Memory

Year Mialmum Median Mean Maximum Std. Dev.
1985 0.032 4.096 6.767 32.77 7.50
1986 0.032 4.096 14.320 65.54 19.92
1987 0.032 8.192 18.290 131.10 26.59
1988 0.060 16.380 29.890 131.10 37.42
1989 0.008 16.380 37.880 165.50 44.32
1990 0.032 24.580 46.710 262.10 47.07
1991 0.100 32.770 53.360 262.10 49.15
Total 0.008 10.240 26.450 262.10 36.84
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Table 3.3.3
Descriptive Statistics for Maximum Memory
Year Minimum Median Mean Maximum Std. Dev.
1985 0.256 24.58 33.50 262.10 31.22
1986 0.256 32.77 65.54 262.10 80.36
1987 0.256 32.77 75.97 524.30 110.03
1988 0.512 40.96 279.00 2097.00 559.75
1989 0.032 65.54 374.40 3146.00 686.35
1990 0.064 81.92 732.70 4194.00 1227.92
1991 0.512 262.10 1102.00 4719.00 1456.48
Total 0.032 32.77 277.10 4719.00 697.95
Table 3.3.4
Descriptive Statistics for MIPS

Year Minimum Median Mean Maximum Std. Dev.

1985 0.10 2.70 5.21 28.00 6.39

1986 0.20 3.40 8.15 33.50 9.03

1987 0.10 4.20 9.31 49.00 11.21

1988 0.20 6.50 15.55 75.00 19.05

1989 0.10 7.90 21.24 114.00 26.61

1990 0.20 14.00 29.56 114.40 33.64

1991 0.40 21.60 35.36 114.40 36.58

Total 0.10 5.70 15.28 114.40 22.35
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Table 3.3.5
Definitions of the Buyer Characteristics
Variable Definition

SIC The standard industrial classification code of the site.

These SICs are grouped into 24 two-digit groups. They are:
1-18, 20-26 & 29, 27, 28, 30-34 & 38 &39, 35, 36, 37, 40-
47, 48, 49, 50, 51- 59, 62 &64-69, 60, 61, 63, 70-79, 81 &
83-89, 80, 82, 90 & 92-96 & 98 & 99, 91, 97. These are
dummy variables which take the value 1 if the site is in the

SIC grouping and 0 otherwise.
IBM A dummy variable which takes the value 1 if the site had

any IBM medium to large system and 0 otherwise.

Site Value The estimated purchase value of the site in 1,000s of dol-
lars. This amount was turned into real dollars by adjusting

for the Producer Price Index.
Maximum MIPS The number of MIPS on the system at the site with the

largest MIPS rating.

Total MIPS The sum total MIPS of all systems at the site.

Total KVA The sum total of the KVA ratings of all systems at the
site.

Age Young The technical age (year of observation minus the vintage

of the system) of the youngest system at the site.
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Table 3.3.6
Number of 1’s for SIC Dummy Variable
Group 1985 1986 1987 1988 1989 1990 1991
2 154 165 255 162 177 122 25
3 60 7 99 65 76 70 7
4 55 67 111 82 84 62 16
5 184 189 234 160 178 96 25
6 112 150 151 137 157 115 24
7 137 134 171 176 116 81 17
8 90 96 99 105 104 63 18
9 7 90 112 88 85 87 18
10 42 98 88 132 96 81 21
11 81 95 115 108 89 100 20
12 132 113 138 108 97 57 13
13 174 174 249 212 277 185 48
14 57 80 106 107 73 65 23
15 194 247 307 247 31 207 51
16 68 96 104 111 48 29 9
17 192 210 287 255 237 202 65
18 360 361 525 495 486 457 115
19 60 61 70 64 84 75 35
20 141 108 177 157 174 146 35
21 170 162 225 174 173 173 39
22 130 165 230 191 237 139 50
23 140 132 153 153 156 115 19
24 74 104 123 105 76 76 18
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Table 3.3.7
Descriptive Statistics for Site Value
Year Minimum Median Mean Maximum Std. Dev.
1985 372.10 7442.00 14880.00 62140.00 15836.80
1986 364.60 7657.00 21900.00 68370.00 22590.74
1987 179.10 9311.00 19510.00 106500.00 23889.48
1988 175.00 10850.00 28540.00 140000.00 36429.42
1989 33.67 11200.00 28880.00 138900.00 37127.44
1990 65.09 10580.00 26810.00 -113900.00 32140.17
1991 39.46 11050.00 21570.00 94710.00 26235.58
Total 33.67 9311.00 23450.00 140000.00 29611.84
Table 3.3.8
Descriptive Statistics for Maximum MIPS

Year Minimum Median Mean Maximum Std. Dev.

1985 0.10 1.40 3.92 99.00 6.12

1986 0.10 2.70 6.07 80.00 8.15

1987 0.10 2.70 6.81 99.00 10.30

1988 0.10 5.00 11.80 99.00 15.51

1989 0.00 6.40 14.87 104.00 19.47

1990 0.10 9.50 22.21 114.40 27.74

1991 0.10 13.00 29.35 114.40 35.52

Total 0.00 4.00 11.36 114.40 18.25
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Table 3.3.9
Descriptive Statistics for Total MIPS
Year Minimum Median Mean Maximum Std. Dev.
1985 0.10 2.20 7.47 181.00 14.95
1986 0.10 3.80 13.39 205.10 24.64
1987 0.10 3.80 14.08 325.00 27.38
1988 0.10 6.90 22.26 392.00 39.06
1989 0.00 8.00 28.00 482.50 48.83
1990 0.10 13.00 44.13 644.60 78.74
1991 0.10 16.00 61.77 953.60 114.11
Total 0.00 5.40 22.49 953.60 48.89
Table 3.3.10
Descriptive Statistics for Total KVA
Year Minimum Median Mean Maximum Std. Dev.
1985 0.00 14.00 40.01 570.00 58.01
1986 0.00 21.20 52.77 476.40 71.88
1987 0.00 13.10 45.01 566.70 72.03
1988 0.00 23.30 50.68 632.00 72.19
1989 0.00 23.10 54.61 805.40 83.23
1990 0.00 29.60 71.23 905.70 115.96
1991 0.00 35.60 79.90 1063.00 128.98
Total 0.00 21.00 52.81 1063.00 82.65
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Table 3.3.11
Descriptive Statistics for Age Young
Year Minimum Median Mean Maximum Std. Dev.
1985 0.00 3.00 3.62 21.00 2.91
1986 0.00 3.00 3.79 21.00 3.04
1987 0.00 3.00 3.62 21.00 2.82
1988 0.00 3.00 3.35 23.00 2.72
1989 0.00 3.00 3.43 28.00 2.70
1990 0.00 3.00 3.59 26.00 2.57
1991 0.00 3.00 4.03 18.00 2.66
Total 0.00 3.00 3.58 28.00 2.80
Table 3.3.12
Number of 0’s and 1’s in IBM Dummy Variable

Year 0 1

1985 547 2392

1986 696 2538

1987 829 3380

1988 1254 2421

1989 1353 2296

1990 918 1923

1991 348 373
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Table 3.3.13
Definitions of the Instrumental Variables
Variable Definition
Time A dummy variable for the time period of observation.

The variable takes a 1 if the observation falls in the year, 0

otherwise.
Region Dummy variables for the region of the country in which

the site resides. There are 9 regidns: New England, Middle
Atlantic, East North Central, West North Central, South
Atlantic, East South Central, West South Central, Mountain

and Pacific.
SMSA This is a dummy variable that takes the value 1 if the

site resides inside an SMSA and a 0 otherwise. This variable

is provided by CIC.

Neighbors These are characteristics (minimum memory, maximum

memory and MIPS) of the closest neighbors to the system
in characteristics space. The distance measure used is Ma-

halanobis distance defined as
(zo — z;)TZ—l(mo - z;)

where zg are the characteristics of the system, z; represents
the characteristics of all systems except zg and X represents
the covariance matrix of the variables minimum memory,

maximum memory and MIPS.
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3.4 RESULTS

In this section we will compute a variety of price indexes based on both traditional
hedonic methods and on methods we have proposed in the previous sections. Two main
themes will emerge. First, it will be shown that traditional hedonic methods overstate the
true benefits buyers receive from improvements in technology. This will be seen by the fact
that our utility index, which assumes a declining ma.rginai utility for characteristics, has a
lower growth rate than the hedonic index. Second, while the utility index does decline at
a slower rate than the hedonic index, it will be shown that this slower rate is sensitive to
the distribution of buyers across the product space. However, even though the utility index
is sensitive to this distribution, it will be pointed out that hedonic methods are unable to
account for this distribution at all. We view both of these issues as significant drawbacks to

hedonic methods, which should be added to Trajtenberg’s (1990) criticism of these methods.

3.4.1 One Characteristic Model

We begin by looking at a model with one characteristic. This is a variation of a model
used by Witte, Sumka and Erekson (1979) and analyzed by Epple (1987). We choose this
model because of its ease of computation, and because it establishes some basic intuition for
the multivariate case.

We first estimate a hedonic surface for each year of the form

Pit = ot + BuMIPS;y + Boy MIPSE + uy (3.4.1)

where P is the price of the system and MIPS represents the MIPS rating of the system.!?
Table 3.4.1 gives the estimation results and Figure 3.4.1 show the graphs of these hedonic
surfaces. From the figure we notice that the shapes of the surfaces are not constant over time

and that the 1986 surface crosses the 1985 surface. This implies a technological retrogression

19 We choose this functional form as opposed to the traditonal log-log because it simplifies the computation
of the £:4:’s. The next chapter will investigate the sensitivity of our index to this choice.
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(in terms of price per performance) from 1985 to 1986 for part of the product space. This
retrogression is important because it implies that an index may rise between 1985 and 1986
before beginning to decline through the end of the sample. Our estimation results show
that all coefficients are significant except the intercept terms in 1986 and 1991 and that the
parameter estimates vary widely over time. This variation is important because it implies
that a flexible functional form is more appropriate than estimating a hedonic surface which
only allows the intercept to change, as has been done in the past.2

The next step is to differentiate (3.4.1) with respect to MIPS to obtain the marginal

hedonic surface. This is given by

MPmips,it = P1e + 2B M1 PS;,. (3.4.2)

We evaluate (3.4.2) at the observed levels of M IPS;;to obtain a vector of estimated marginal
prices for MIPS for each year. We then pool these vectors of marginal prices together to

get Mpmips. We then estimate demand by estimating

MPmips,i = ag + a1 MIPS; + B} + n; (3.4.3)

by two-stage least squares using the instrumental variables described in the previous sec-
tion.?! Here B represents the matrix of buyer characteristics. For the instrumental variable
“neighbors”, we chose to include the nine closest systems in characteristics space as mea-
sured by Mahalanobis distance.2? The results of the estimation of (3.4.3) are given in Table
3.4.2.

Table 3.4.2 shows that the coefficient on MIPS is negative and significant implying

downward sloping demand. The results also show that none of the SIC group coefficients

20 Berndt, Showalter and Woolridge (1990) examine the sensitivity of hedonic price indexes for computers
to the choice of functional form on the hedonic surface.

21 This demand curve is derived from a bid curve of the form P; = yoMIPS; + 7, MIPS? where o =
ap+ BiQ and 7, = a1 /2.

22 We chose nine systems because all of their coefficients were significant in the first stage regression and
this was the most we could include due to computing constraints.
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are significantly different from zero using a 5% level of significance. However, it is also
important to test whether they are different from each other. Unfortunately, the coefficients
are significantly different from each other in only a few instances. All of the other buyer

characteristics, except Age of the Youngest System, are significant.

Based on the estimate of (3.4.3) along with the estimates of (3.4.1) we proceed to com-
pute the forward index for each year as described in the Methodology. The results of this
computation are given in Tables 3.4.3A and 3.4.3B.

The first thing to notice when looking at these two tables is that it appears to make
little difference whether we use P* or P? as our weight. Second, looking at the 1985 column
(which is the index computed using the 1985 buyers) we see that the index has an average
annual growth rate (shown in the last row) which is slower than that found in previous
studies. However, we are looking at a different time period than other studies, so we will
need to compare these results with a price index computed in the traditonal fashion. We
will do this below. Finally, we note the rise in the index between 1985 and 1986 when using
the 1985 buyers. Recall that after examining Figure 3.4.1 we believed this might occur. The
economic interpretation of this is that the price per performance in 1985 was lower than
that in 1986 for a portion of the product space, and as a consequence buyers could achieve
a higher utility level in 1985. However, we do note that the surfaces cross at two levels of
MIPS—approximately 0.8 and 16.5. The 1985 surface lies above the 1986 surface between
these two points. This implies that not all buyers were better off in 1985 than 1986. The
computed price indexes say that on average, though, buyers were better off in 1985 than

1986.

As stated above, we need to compare our index with a traditional hedonic index. We
compute two traditional hedonic indexes, shown in Table 3.4.4. In the first column we
compute the index using a log-log functional form, and in the second column we compute

the index using a log-linear functional form.

Both of these hedonic indexes have an average annual growth rate more than two times
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higher than those shown in the 1985 columns of Tables 3.4.3A and 3.4.3B. The log-linear
hedonic index rises between 1985 and 1986, whereas the log-log index does not. This is very
interesting because as stated earlier, almost all previous studies have employed a log-log
form and have rarely tested it against any other forms. Here we see that while both the
log-log and log-linear indexes overstate the benefits to buyers resulting from the shifts in the
hedonic surface, the log-linear index does pick up the retrogression from 1985 to 1986. This

is evidence that the choice of functional form is important when computng these indexes.

Returning to Tables 3.4.3A and 3.4.3B, we see that as we move across the tables the
growth rates increase. This implies that the index computation is sensitive to the set of
buyers we use as weights. In order to get a better understanding of this, we produced a
boxplot showing the distribution of buyers across MIPS over time. This is shown in Figure
3.4.2. The shaded regions in the boxplot represent the interquartile range and the white line

in the shaded region represents the median.

It is clear from the figure that the distribution of observed purchases is changing dras-
tically over time. In fact, the maximum observed purchase in 1985 is nearly the median
purchase by 1991. If all buyers benefit by exactly the same amount from improvements in
technology, then this fact will not matter. However, Tables 3.4.3A and 3.4.3B clearly show
that buyers do not benefit by the same amount as shown by the changing growth rates of
the indexes over time. This observation is masked by the traditional hedonic index which

assumes all buyers benefit by exactly the same amount.

One way to attempt to incorporate the changing distribution into a single index would
be to “link” the adjacent indexes together. Assuming that we are better at predicting what
a buyer would purchase in the next period rather than two or more periods ahead, we can
place the 1985 buyers into 1986, the 1986 buyers into 1987, etc., choose some year as our
base and then link these indexes together. We do this in Table 3.4.5 using both P* and P°

as our weights.

We see that these indexes have growth rates lower than the traditional hedonic and still
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pick up the increase from 1985 to 1986. These indexes decline more rapidly, though, than
the utility indexes of Tables 3.4.3A and 3.4.3B using the 1985 buyers. This is because more
weight is being given to buyers at higher levels of MIPS who benefit more from improvements
in technology than those at lower levels

We next compute our “reverse” index. This is shown in Table 3.4.6. Again, we see rates
of growth lower than the traditional hedonic and we see changing rates of growth depending
on the set of buyers we use as weights. This index also rises between 1985 and 1986 except
when we weight by the 1986 buyers. This is because, on average, more 1986 buyers were
better off in 1986 than 1985. This is the opposite of what happened when we computed the
forward index and weighted by 1985 buyers. This is further evidence that the distribution
of buyers one uses as weights is important.

Table 3.4.7 shows the reverse linked index. The growth rate is lower than the traditional
hedonic yet faster than the reverse index using the 1991 buyers as weights.

As a final step with this one characteristic model, we recompute all of the indexes
using only the IBM and plug-compatible acquisitions as suggested by Dulberger (1989). She
suggested this because of the noncomparability of MIPS ratings between IBM and plug-
compatible systems with others. These indexes are given in Tables 3.4.8A-3.4.12.

All of the indexes are virtually identical to their counterparts using the entire data set.
This is not surprising since approximately 80% of the acquisitions over this time period are
IBM or IBM compatible. Figure 3.4.3 shows a boxplot of the distribution of MIPS using
only the IBM and plug-compatible data. Comparing this with Figure 3.4.2 we see that the
distributions are also almost identical. These results imply that at least for econometric
purposes, the distinction between these two sets of data may be unnecessary.?

Trajtenberg (1990) argued that hedonic indexes were inadequate for two reasons. He
described situations where hedonic methods would fail to account for technological change.

The first was the introduction of new systems on the existing hedonic surface which “filled-in”

23 While the distinction may be unnecessary for econometric purposes, it is necessary for purchase decisions;
see Triplett (1989)
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the product space. Because the new systems, by design, lie on the already existing hedonic
surface, a hedonic index would not register any innovation. A second type of innovation
which a hedonic index may not account for is an innovation which extends the range of
the product space. If the new, previously infeasible, system is priced similar to systems on
the existing hedonic surface, this too will fail to show up in the hedonic index (for a more
complete description of these two cases see Trajtenberg (1990)). Our results to this point
suggest two more inadequacies of hedonic indexes: they do not account for the distribution
of buyers, nor the distribution of benefits associated with different parts of the characteristics

spectrum.

Finally, as shown in the previous chapter, the utility index has a lower growth rate
than the traditional hedonic index. This is a consequence of the concavity of the bid curve,
or equivalently, the downward sloping demand. The results in this section lend empirical
support to this analytical result.

This section has focused on comparing our utility index with a traditional hedonic index
using a single characteristic. We could extend this model in two ways. First, we could
add more computer characteristics to provide a more complete description of the product.
Second, we could examine the sensitivity of the utility index to the choice of functional form
on the hedonic surfaces. In the next section we will consider the former and in the next

chapter we will consider the latter.

3.4.2 Three Characteristic Model

We now extend our description of a mainframe computer by adding minimum and maxi-
mum memory as characteristics. We choose this description because it closely resembles the
descriptions used in previous research.2* While we are choosing this set of characteristics,
we do not believe that this is a complete description of a mainframe computer as stated

by Dulberger (1989). Unfortunately, there are little, if any, other measured characteristics

24 See Triplett (1989) for a list of studies and their choice of characteristics.
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available to researchers. One variable which has often been discussed is reliability. Berndt
(1991) points out that if reliability is correlated with the producer, then a producer dummy
variable might be appropriate. While this may be true, there may be other unobservable
characteristics which may be correlated with the producing firm which are not valued by
buyers, but which in fact would affect our index. For this reason we chose not to include
firm dummy variables. Future work could look into a better characterization of the computer
system.

As in the one characteristic case, we begin by estimating a hedonic surface for each year

of the form

Pyt = Bot + BitMIN.MEM + B2 MIPS + Bse MAX. MEM

+ Bt MIN.MEM? + BssMIPS? + Bt MAX.MEM? + uy. (3.4.4)

At this point we do not include interactions among the variables in the specification of
(3.4.4). We will consider this issue below. The estimation results are given in Table 3.4.13.

The results show that for the most part the coefficients are significant. In addition, all
R? values are above 0.92. Three coefficients, MAX.MEM in 1985, MIN.MEM in 1986
and MAX.MEM in 1990, are the wrong sign (MAX.MEM in 1990 is not significantly
different from zero). This is possibly due to a high correlation between MIN.MEM and
MAX.MEM. This correlation is 0.76. However, believing this to be a more correct set
of characteristics than a MIPS — MIN.MEM or MIPS — MAX.MEM specification, we
choose to maintain it.

We next compute the predicted marginal prices and estimate the following demand

equations:

MPmini = a10 + ennMIN.MEM + B; + ni, (3.4.5A)
MPmips,i = azo + a1t MIPS + BiQs + 72, (3.4.5B)
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We estimate each equation in (3.4.5) separately using two-stage least squares with the in-
struments described in Section 3.3.4. We decided not to include all three characteristics on
the right hand side of each equation because the high correlation among them resulted in
upward sloping demand curves. The above specification produced reasonable results. Table
3.4.14 gives the correlation matrix of the computer characteristics. Tables 3.4.15-3.4.17 give
the demand estimation results.

Each of the demand equations is downward sloping. The SIC dummy variables are again
rarely significantly different from the excluded group or each other. The remaining buyer
characteristics, except Total KVA and the IBM dummyy in minimum memory demand and
Age Young in maximum memory demand, are significant.

With these results, we proceeded to compute our forward index, shown in Tables 3.4.18A
and 3.4.18B. The traditional hedonic indexes are given in Table 3.4.19.

The indexes shown in Tables 3.4.18A and 3.4.18B closely resemble those of the one
characteristic model. The significant difference is that the three characteristic index has a
higher growth rate than the one characteristic index. This should be expected since we are
now allowing innovation to take place in different characteristic dimensions. Allowing this
innovation permits buyers to obtain benefits they could not obtain in the one characteristic
case.

As seen in the one characteristic case, the growth rates increase as we weight by later
sets of buyers. Figures 3.4.4 and 3.4.5 show boxplots for the distributions of minimum and
maximum memory. Again we see that the maximum purchase in 1985 is nearly the median
purchase by 1991. The changes in these distributions along with the changes in the MIPS
distribution significantly affect the growth rates we see as we weight by later sets of buyers.
This continues to support the claim made in section 3.4.1 that the distribution of buyers is
an important factor when computing the utility index. This factor is not taken into account
in the computation of the traditional hedonic index.
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Finally, we again see that these indexes rise between 1985 and 1986 when we weight
by the 1985 buyers. However, it is not clear if this is due to technological retrogression in
all characteristic dimensions or some subset of the dimensions, since we cannot draw the
picture. Suffice it to say that, on average, the 1985 buyers were better off in 1985 than 1986

given their demand curves.

The hedonic indexes shown in Table 3.4.19 also look. similar to the hedonic indexes
computed for the one characteristic case. They both overstate the benefits of innovation to
buyers and again, the log-linear model is the only one to detect the retrogression from 1985
to 1986. This further supports the earlier claim that the choice of functional form for the

hedonic surface is a key aspect in computing a hedonic or utility index.

Tables 3.4.20-3.4.22 present the forward linked, reverse and reverse linked indexes. They
convey much of the same information provided by their one variable counterparts. The
interesting feature of these is the growth rates of the linked indexes. Each has a rate higher
than the log-linear hedonic rate, but lower than the log-log hedonic rate. While we have
been arguing that the utility index is superior to the hedonic index in measuring the benefits
of innovation to buyers, we also realize that the results obtained from a utility index are
sensitive to the set of buyers we use as weights. For example, the forward linked index using
P* as the weight has a growth rate of -30.38% from 1985-1991. If we exclude 1991, the
growth rate is -16.38%. In order to try to overcome this sensitivity, we have proposed that
a linked index may be appropriate since the final index is not dependent on a single set
of buyers. In this three characteristic case, both our linked index and the hedonic index
perform about the same in the long run. However, there is considerable variation in the

short run.

The faster rate of decline in the linked index for the three characteristic case is a result
of the enormous rate of growth for the 1990 buyers facing the 1991 hedonic surface. For
example, the growth rate using P* as a weight is over 100 percent between 1990 and 1991
using the 1990 buyers. That growth rate is never more than 54 percent using the other sets
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of buyers. This suggests that one might average the growth rates over all sets of buyers to
get a linked index. We compute this for the forward index using P* as a weight. This yields
the index given in Table 3.4.23. Notice that now the growth rate is 21.44%, which is well
below the P* linked index growth rate given in Table 3.4.20 and well below the growth rates
of the hedonic indexes. While the linked index computed previously was less dependent on
the set of buyers than the utility index using a single set of buyers, computing the index in
this fashion (averaging the growth rates over all sets of buyers) is even less dependent on the
sets of buyers. While this is a nice feature of this index, it also has drawbacks. The main
drawback is that it gives weight to buyers who are being projected far into the future. The
farther we project into the future, the greater possiblity of hitting a margin. Buyers who hit
the margin do not receive as much benefit as they would have had they purchased what was
optimal. This implies that we should concentrate on projecting only a short time into the
future.

Tables 3.4.24A-3.4.29 recompute all of the indexes of the three characteristic model using
only the IBM and plug-compatible acquisitions. The utility and hedonic indexes change very
little from their counterparts using all of the acquisitions. The most notable feature is that
they all have higher growth rates than the “all data” indexes.?® This implies that price per
performance in IBM systems fell faster over the time period than the overall rate. Since
the distributions of characteristics purchased do not seem to be drastically different between
IBM and the entire data set, it must either be the case that IBM was lowering its prices at
a faster rate than the overall rate, or that there is some unmeasured characteristic which
is causing IBM’s price per performance to fall relative to the other systems in the sample.
This is interesting and needs to be investigated further by attempting to expand the set of

measured characteristics.

25 Note that these indexes are plagued by the 1991 problem described earlier. Removing 1991 results in a
significantly lower growth rate.
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3.4.3 Summary

In this section we have computed a large number of indexes providing a. variety of inter-
esting results. However, we believe that there are two main points made by the results. First,
hedonic indexes overstate the true benefits received by buyers as measured by a price equiv-
alent utility index, because hedonic indexes do not account for declining marginal utility of
characteristics; and second, the traditional hedonic index fails to account for the distribution
of buyers across the product space.

The traditional hedonic methods focus their attention on the average price change of
the product holding product characteristics constant. This index says nothing about the
benefits, measured by changes in utility, that buyers actually receive from the shifting hedonc
surface. On the other hand, the utility index that we have proposed here does measure the
benefits buyers receive from one period to the next following the suggestions of Trajtenberg
(1990). Our utility index shows that, in mainframe computers, the traditional hedonic index
overstates these benefits by a significant margin. If innovation must be measured in terms
of its value to buyers, then based on the results presented here, one must be skeptical of the
inferences drawn from the traditional hedonic index regarding changes to economic welfare.

The second point concerns the distribution of buyers across the product space. If buyers
were uniformly distributed across the product space, and buyers’ demand was such that
they moved to new hedonic surfaces in a uniform fashion, then the traditional hedonic index
would probably perform well. However, in the case that we have examined, the distribution
of buyers is skewed so that a large proportion of buyers buy small mainframe systems.
An index which assumes benefits to buyers in this scenario are the same as in the uniformly
distributed case, while possibly giving some insight, will miss the true benefits buyers receive
from improving technology. For this reason, we believe that, given appropriate data, the

method of measuring innovation in this paper is superior to the traditional hedonic index.
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3.4.4 Tables

Table 3.4.1
One Characteristic Model
Hedonic Surface Estimates
Year Coefficient Value Std. Error t value
Bo -265.53 69.42 -3.82
1985 51 3503.73 20.59 170.19
B2 -45.87 0.83 -54.96
Bo 435 106.83 20.04
1986 B 3163.35 28.15 112.37
B2 -26.15 1.03 -25.44
Bo 1373.90 155.29 8.85
1987 51 1809.72 24.67 73.36
B2 6.06 0.56 10.73
Bo 673.00 194.72 3.46
1988 B 1667.63 20.25 82.37
Ba 3.21 0.30 10.61
Bo -2440.01 176.70 -13.81
1989 B 1651.60 13.33 123.88
B2 -3.24 0.14 -22.46
Bo -1597.96 200.87 -7.96
1990 B1 1008.34 12.42 81.20
B -0.70 0.12 -6.08
Bo -775.02 463.96 -1.67
1991 B 513.83 25.82 19.90
B2 1.61 0.23 7.06
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Table 3.4.2
One Characteristic Model
MIPS Demand Estimate

Variable Valuee Std. Error t value
ag 1971.65 60.89 32.38
a) -12.82 0.49 -26.28
SIC-2 29.22 67.17 0.43
SIC-3 -27.61 77.34 -0.36
SIC-4 -73.95 78.44 - -0.94
SIC-5 62.68 66.27 0.95
SIC-6 24.81 68.90 0.36
SIC-7 78.31 69.95 1.12
SIC-8 29.94 74.96 0.40
SIC-9 -43.34 75.06 -0.58
SIC-10 47.52 75.07 0.63
SIC-11 -25.29 73.24 -0.35
SIC-12 103.37 72.14 1.43
SIC-13 -26.30 65.40 -0.40
SIC-14 61.05 75.32 0.81
SIC-15 21.80 63.96 0.34
SIC-16 144.10 76.80 1.88
SIC-17 57.23 64.40 0.89
SIC-18 -30.31 60.96 -0.50
SIC-19 45.24 80.11 0.56
SIC-20 -20.69 67.88 -0.30
SIC-21 4.27 66.79 0.06
SIC-22 -30.55 67.07 -0.46
SIC-23 46.63 68.57 0.68
SIC-24 7.84 75.74 0.10
Site Value 0.05 0.00 11.23
Max Mips -9.34 0.82 -11.37
Total Mips -2.69 0.47 -5.75
Total KVA 0.75 0.20 3.73
Age Young 3.27 3.07 1.06
IBM 200.26 18.12 11.05
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Table 3.4.3A
One Characteristic Model
Utility-Based Price Index-P* as Weight
1985 1986 1987 1988 1989 1990
1985 231.38
1986 267.69 234.22
1987 196.32 193.97 226.93
1988 190.36 189.47 198.62 221.20
1989 182.88 182.52 183.32 183.27 208.17
1990 135.47 135.36 135.58 136.17 136.79 187.32
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -13.98 -17.02 -20.49 -26.46 -36.66 -62.76

Table 3.4.3B
One Characteristic Model
Utility-Based Price Index—P° as Weight
1985 1986 1987 1988 1989 1990
1985 236.13
1986 259.12 241.54
1987 188.39 184.15 231.06
1988 186.53 184.95 197.74 226.75
1989 182.42 182.27 182.61 179.70 201.04
1990 135.14 134.99 135.23 135.56 136.76 161.50
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -14.32 -17.64 -20.94 -21.29 -34.92 -47.93
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Table 3.4.4
One Characteristic Model
Traditional Hedonic Indexes
Year Log-Log Log-Linear
1985 706.29 571.66
1986 666.91 651.22
1987 465.21 513.50
1988 383.74 455.22
1989 266.21 307.81
1990 179.84 195.30
1991 100.00 100.00
AAGR -32.58 -29.06
Table 3.4.5
One Characteristic Model
Linked Indexes
Year P* as Weight | P” as Weight
1985 410.29 418.40
1986 474.68 459.14
1987 393.11 350.05
1988 344.07 299.57
1989 285.07 237.41
1990 187.32 161.50
1991 100.00 100.00
AAGR -23.53 -23.85
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Table 3.4.6
One Characteristic Model
Reverse Index
1986 1987 1988 1989 1990 1991
1985 100.00 100.00 100.00 100.00 100.00 100.00
1985 78.15 104.61 104.81 104.45 104.89 106.79

1987 64.30 68.75 75.02 76.83 73.75
1988 67.81 68.11 71.47 69.82
1989 59.78 57.31 57.65
1990 45.33 38.00
1991 34.63

AAGR -24.65 -22.08 -12.95 -12.86 -15.82 -17.67

Table 3.4.7
One Characteristic Model
Reverse Linked Index

Year P° as Weight
1985 100.00
1986 78.15
1987 48.04
1988 47.38
1989 41.59
1990 32.90
1991 29.98
AAGR -20.08
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Table 3.4.8A
One Characteristic Model
Utility-Based Index-P*-IBM Only
1985 1986 1987 1988 1989 1990
1985 233.29
1986 266.68 236.75
1987 195.09 192.37 227.82
1988 190.65 189.68 199.31 221.70
1989 183.58 183.49 184.08 183.72 207.76
1990 134.04 133.96 134.26 134.93 135.59 184.59
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -14.12 -17.24 -20.59 -26.54 -36.56 -61.30

Table 3.4.8A
One Characteristic Model
Utility-Based Index-P%-IBM Only
1985 1986 1987 1988 1989 1990
1985 238.26
1986 259.91 243.86
1987 185.88 181.25 232.35
1988 187.35 185.23 198.15 227.27
1989 183.03 182.93 183.35 177.83 200.77
1990 133.84 133.77 134.11 134.60 135.78 158.70
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -14.47 -17.83 -21.08 -27.37 -34.85 -46.19
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Table 3.4.9
One Characteristic Model
Traditional Hedonic Indexes-IBM Only
Year Log-Log Log-Linear
1985 735.16 552.83
1986 682.01 664.28
1987 453.40 487.97
1988 389.19 448.92
1989 270.50 308.01
1990 177.69 191.04
1991 100.00 100.00
AAGR -33.25 -28.50
Table 3.4.10
One Characteristic Model
Linked Indexes-IBM Only
Year P* as Weight PY as Weight
1985 420.01 433.73
1986 480.13 473.14
1987 390.13 351.66
1988 341.31 299.90
1989 282.84 234.66
1990 184.59 158.70
1991 100.00 100.00
AAGR -23.92 -24.45
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Table 3.4.11
One Characteristic Model
Reverse Index-IBM Only
1986 1987 1988 1989 1990 1991
1985 100.00 100.00 100.00 100.00 100.00 100.00
1986 81.92 106.29 106.99 106.59 106.75 109.26

1987 65.18 69.84 75.93 78.05 74.86
1988 69.02 69.44 73.05 71.52
1989 60.90 58.97 60.02
1990 45.41 39.55
1991 35.25

AAGR -19.94 -21.40 -12.36 -12.40 -15.79 -17.38

Table 3.4.12
One Characteristic Model
Reverse Linked Index-IBM Only

Year P’ as Weight

1985 100.00

1986 81.92

1987 50.24

1988 49.65

1989 43.54

1990 33.53

1991 29.88
AAGR -20.13
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Table 3.4.13
Three Characteristic Model
Hedonic Surface Estimates
Year Coefficient Value Std. Error t value
Bo -354.39 91.53 -3.87
B 378.22 43.34 8.73
B2 3158.82 54.46 58.00
1985 B3 -18.49 5.50 -3.36
B -6.68 1.46 -4.57
Bs -35.89 2.38 -15.11
Bs -0.02 0.02 -0.98
Bo -363.90 96.53 -3.77
B -23.91 26.47 -0.90
B2 3418.26 34.14 100.12
1986 B3 0.74 5.68 0.13
B 3.91 0.35 11.11
Bs -49.46 0.99 -49.73
B -0.03 0.02 -1.58
Bo -503.91 92.97 -5.42
B 406.79 19.15 21.24
B2 618.03 31.39 19.69
1987 B3 116.49 5.00 23.29
Jon -0.89 0.25 -3.63
Bs 6.00 0.82 7.36
B -0.13 0.01 -8.97
Bo -295.86 179.06 -1.65
B 466.20 19.51 23.89
B2 882.19 31.24 28.24
1988 B3 2.35 1.13 2.08
o -0.91 0.13 -7.26
Bs 4.54 0.40 11.25
Bs 0.00 0.00 -0.65
84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com



Table 3.4.13 (cont.)
Three Characteristic Model
Hedonic Surface Estimates
Year Coeflicient Value Std. Error t value
Bo -2688.73 192.69 -13.95
B 300.19 20.16 14.89
B2 902.15 27.41 32.91
1989 B3 14.02 1.00 13.95
Ba -0.82 0.10 -8.24
Bs 2.06 0.24 8.61
Bs -0.01 0.00 -14.67
Bo -2737.45 231.89 -11.80
B 210.36 20.16 10.43
B 768.65 28.03 27.42
1990 Bs -0.29 0.51 -0.56
Ba -0.93 0.10 -9.32
Bs 0.08 0.20 0.41
Bs 0.00 0.00 4.58
Bo -1204.85 509.82 -2.36
Bi 60.22 38.54 1.56
B2 456.06 55.55 8.21
1991 Bs 0.33 0.87 0.37
B4 -0.33 0.17 -1.98
Bs 1.25 0.37 3.39
Bs 0.00 0.00 2.50
Table 3.4.14

Correlation Matrix for
Computer Characteristics
Min Mips Max
Min 1.00 0.92 0.76
Mips 0.92 1.00 0.86
Max 0.76 0.86 1.00
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Table 3.4.15
Three Characteristic Model
Minimum Memory Demand
Variable Value Std. Error t value

aig 346.25 13.54 25.58
ail -1.35 0.06 -21.64
SIC-2 -34.95 14.66 -2.38
SIC-3 -48.38 17.23 -2.81
SIC-4 -27.29 17.02 -1.60
SIC-5 -32.43 14.88 -2.18
SIC-6 -38.58 15.38 -2.51

SIC-7 -28.82 15.16 -1.90
SIC-8 -13.84 16.70 -0.83
SIC-9 -24.28 16.54 -1.47
SIC-10 -16.20 16.73 -0.97
SIC-11 -39.42 16.40 -2.40
SIC-12 -34.21 16.18 -2.11

SIC-13 -34.39 14.38 -2.39
SIC-14 -28.12 16.42 -1.71

SIC-15 -38.28 14.17 -2.70
SIC-16 -22.55 17.32 -1.30
SIC-17 -22.50 14.21 -1.58
SIC-18 -21.07 13.44 -1.57
SIC-19 -48.66 17.20 -2.83
SIC-20 -27.43 14.94 -1.84
SIC-21 -37.30 14.55 -2.56
SIC-22 -21.39 14.59 -1.47
SIC-23 -34.09 15.07 -2.26
SIC-24 -31.56 16.34 -1.93
Site Value 0.00 0.00 3.96

Max MIPS -0.73 0.19 -3.86
Total MIPS -0.39 0.11 -3.55
Total KVA 0.04 0.04 1.01

Age Young -4.37 0.67 -6.48
1BM -3.24 3.94 -0.82
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Table 3.4.16
Three Characteristic Model
MIPS Demand

Variable Value Std. Error t value
@20 1196.10 84.09 14.22
a9 -7.63 0.67 -11.38
SIC-2 187.77 91.11 2.06
SIC-3 120.53 107.11 1.13
SIC-4 120.27 105.84 . 1.14
SIC-5 263.45 92.49 2.85
SIC-6 133.22 95.61 1.39
SIC-7 218.16 94.26 2.31
SIC-8 64.77 103.85 0.62
SIC-9 38.17 102.79 0.37
SIC-10 168.00 103.99 1.62
SIC-11 114.44 101.95 1.12
SIC-12 307.18 100.57 3.05
SIC-13 108.04 89.40 1.21
SIC-14 147.70 102.06 1.45
SIC-15 157.17 88.07 1.78
SIC-16 163.37 107.66 1.52
SIC-17 194.33 88.35 2.20
SIC-18 96.90 83.58 1.16
SIC-19 62.72 106.91 0.59
SIC-20 82.09 92.90 0.88
SIC-21 182.94 90.42 2.02
SIC-22 15.17 90.73 0.17
SIC-23 188.71 93.69 2.01
SIC-24 139.46 101.55 1.37
Site Value 0.03 0.01 4,54
Max MIPS -7.79 1.20 -6.49
Total MIPS -1.76 0.69 -2.56
Total KVA 0.95 0.27 3.50
Age Young 13.34 4.20 3.18
IBM 188.26 24.49 7.69
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Table 3.4.17
Three Characteristic Model
Maximum Memory Demand
Variable Value Std. Error t value
azp 19.47 3.91 4.98
az) -0.01 0.00 -7.52
SIC-2 3.42 4.23 0.81
SIC-3 3.03 4.98 0.61
SIC-4 5.69 492 1.16
SIC-5 -0.07 4.30 -0.02
SIC-6 -2.56 4.44 -0.58
SIC-7 -2.88 4.38 -0.66
SIC-8 -3.79 4.83 -0.79
SIC-9 2.07 4.78 0.43
SIC-10 -2.22 4.83 -0.46
SIC-11 -2.23 4.74 -0.47
SIC-12 -0.64 4.67 -0.14
SIC-13 0.91 4.16 0.22
SIC-14 -0.12 4.75 -0.03
SIC-15 -0.20 4.09 -0.05
SIC-16 4.14 5.00 0.83
SIC-17 0.07 4.11 0.02
SIC-18 0.78 3.88 0.20
SIC-19 -0.71 4.97 -0.14
SIC-20 0.88 4.32 0.20
SIC-21 1.36 4.20 0.32
SIC-22 3.17 4.22 0.75
SIC-23 -3.72 4.35 -0.85
SIC-24 1.66 4.72 0.35
Site Value 0.00 0.00 0.83
Max MIPS -0.24 0.05 -4.38
Total MIPS 0.09 0.03 2.93
Total KVA -0.06 0.01 -4.47
Age Young 0.00 0.20 0.01
IBM 4.55 1.14 4.00
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Table 3.4.18A
Three Characteristic Model
Utility-Based Price Index-P* as Weight
1985 1986 1987 1988 1989 1990
1985 326.20
1986 389.39 325.63
1987 326.22 325.50 321.46
1988 252.06 253.80 259.36 310.94
1989 228.80 228.35 239.50 247.74 297.24
1990 163.17 163.51 165.41 168.20 170.86 272.94
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -19.71 -23.61 -29.19 -37.81 -54.47 -100.41

Table 3.4.18B
Three Characteristic Model
Utility-Based Price Index-P° as Weight
1985 1986 1987 1988 1989 1990
1985 329.80
1986 362.52 328.73
1987 318.82 318.47 323.84
1988 253.60 255.44 268.21 306.48
1989 218.95 219.70 236.62 249.78 280.36
1990 164.87 165.30 169.71 170.74 177.73 237.34
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -19.89 -23.80 -29.38 -37.33 -51.55 -86.43
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Table 3.4.19
Three Characteristic Model
Traditional Hedonic Indexes
Year Log-Log Log-Linear
1985 863.50 484.86
1986 790.98 513.64
1987 532.31 388.36
1988 416.19 343.03
1989 284.22 225.12
1990 189.24 164.45
1991 100.00 100.00
AAGR -35.93 -26.31
Table 3.4.20
Three Characteristic Model
Linked Index
Year P* as Weight | PY as Weight
1985 619.03 520.86
1986 738.95 572.53
1987 738.65 554.66
1988 595.96 459.38
1989 474.83 374.39
1990 272.94 237.34
1991 100.00 100.00
AAGR -30.38 -27.51
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Table 3.4.21
Three Characteristic Model
Reverse Index
1986 1987 1988 1989 1990 1991
1985 100.00 100.00 100.00 100.00 100.00 100.00
1986 59.35 82.53 86.52 88.70 90.02 90.53

1987 49.03 74.77 81.00 85.51 88.60
1988 53.14 53.68 59.30 62.65
1989 48.78 53.94 57.07
1990 38.88 30.68
1991 29.01

AAGR -52.18 -35.63 -21.07 -17.95 -18.90 -20.62

Table 3.4.22
Three Characteristic Model
Reverse Linked Index

Year PY as Weight

1985 100.00

1986 59.35

1987 35.26

1988 25.06

1989 22.77

1990 16.41

1991 15.52
AAGR -31.05
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Table 3.4.23
Three Characteristic Model
Linked Index—Average All Growth Rates

Year P* as Weight
1985 362.06
1986 432.21
1987 395.52
1988 310.97
1989 273.77
1990 184.14
1991 100.00
AAGR | -21.44

Table 3.4.24A
Three Characteristic Model
Utility-Based Price Index-P*~IBM Only
1985 1986 1987 1988 1989 1990
1985 679.27
1986 721.05 674.56
1987 722.03 706.41 670.03
1988 647.19 633.42 671.20 792.41
1989 541.55 529.78 553.00 674.84 830.92
1990 302.42 297.81 307.65 363.71 404.07 812.54
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -31.93 -38.18 -47.55 -69.00 -105.87 -209.50
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Table 3.4.24A
Three Characteristic Model
Utility-Based Price Index-P°-IBM Only
1985 1986 1987 1988 1989 1990
1985 715.29
1986 707.64 704.08
1987 727.45 707.00 702.53
1988 652.46 634.63 681.98 834.36
1989 547.65 538.72 570.85 687.23 900.56
1990 306.00 299.67 312.18 365.76 434.23 1082.36
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -32.79 -39.03 -48.74 -70.72 -109.89 -238.17

Table 3.4.25
Three Characteristic Model
Traditional Hedonic Indexes-IBM Only
Year Log-Log Log-Linear
1985 886.58 450.60
1986 802.46 497.35
1987 507.14 350.64
1988 409.48 319.71
1989 283.20 213.66
1990 185.19 156.10
1991 100.00 100.00
AAGR -36.37 -25.09
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Table 3.4.26
Three Characteristic Model
Linked Index-IBM Only
Year P* as Weight P’ as Weight
1985 1761.89 2826.07
1986 1870.26 2795.84
1987 1958.57 2807.43
1988 1961.99 2725.31
1989 1670.89 2244.73
1990 812.54 1082.36
1991 100.00 100.00
AAGR -47.82 -55.69
Table 3.4.27

Three Characteristic Model
Reverse Index-IBM Only
1986 1987 1988 1989 1990 1991
1985 100.0 100.00 100.00 100.00 100.00 100.00
1986 79.3 87.79 91.50 93.50 95.07 95.92

1987 62.29 97.23 98.95 100.71 102.49
1988 65.55 80.29 83.42 84.88
1989 58.08 62.79 64.17
1990 43.89 26.94
1991 33.35

AAGR -23.2 -23.67 -14.08 -13.58 -16.47 -18.30
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Table 3.4.28
Three Characteristic Model
Reverse Linked Index-IBM Only
Year P’ as Weight
1985 100.00
1986 79.30
1987 56.27
1988 37.94
1989 27.44
1990 . 19.18
1991 23.74
AAGR -23.97
Table 3.4.29
Three Characteristic Model
Linked Index-Average All Growth Rates-IBM Only
Year P* as Weight
1985 844.93
1986 896.91
1987 918.51
1988 854.45
1989 715.27
1990 386.01
1991 100.00
AAGR -35.57
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3.4.5 Figures
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Figure 2.4.3
Box-Plot of MIPS-IBM Data
Year
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Box-Plot of Maximum Memory-All Data
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3.5 CONCLUSION

In this chapter we have employed an extensive micro-dataset on the mainframe computer
market from 1984-1991 in order to investigate the adequacy of traditional hedonic based
quality-adjusted price indexes. We describe an alternative procedure based on Rosen (1974),
Bartik (1987), Epple (1987) and Trajtenberg (1990). Using this method we have shown that
an index which accounts for the benefits buyers receive from improvements in new technology
declines at a slower rate than a traditional hedonic price index. This supports the claim made
in Chapter 2 that a utility based index, with buyers having a diminishing marginal utility

for characteristics, should fall slower than a hedonic index.

It was shown that while the utility index declined at a slower rate than the hedonic index,
the rate of decline of the utility index was sensitive to the choice of buyers used to compute
the index. However, it was also pointed out that hedonic indexes are unable to account
for this distribution at all. We conclude that this failure to account for the distribution of
buyers is an additional drawback of hedonic methods to be added to drawbacks described

by Trajtenberg (1990).

We noted throughout the problems with using MIPS as a system characteristic and using
acquisitions from both IBM and non-IBM vendors. We compared results using both sets of
data, and for the most part there was little difference. If anything, we noted that the IBM-
only indexes declined at a faster rate than the overall rate. This could have occurred for
a number of reasons. First, it could be that IBM lowered its prices at a faster rate than
the overall rate. Second, and more likely, there may be some unobserved characteristic, like
reliability, which is keeping non-IBM systems’ prices higher or allowing IBM prices to fall
lower. In any event, we believe this warrants a search for even better data which will allow

for a better description of a mainframe computer.

Finally, the results were obtained while maintaining a specific functional form for the
hedonic surfaces in the first step of the computation of our index. In the next chapter we
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will investigate the robustness of our results to that choice by looking at various alternative

functional forms.
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CHAPTER 4
A LOOK AT FUNCTIONAL FORM

4.1 INTRODUCTION

In the previous chapter we adopted the use of the quadratic functional form on the basis
of ease of computation. Our interest in this chapter is in determining the sensitivity of the
computed benefit index to this choice. We find that there is a tradeoff between the precision
of the hedonic price function estimates and the ease of use of those estimates for computing
the benefit index. Our analysis shows, though, that the gains from alternative functional
forms are small relative to the difficulties in computation that arise. These difficulties arise
at the stage where we compute our predicted (or counterfactual) levels of characteristics.
When we move away from the quadratic form (which has a linear marginal price surface)
we are forced to solve a nonlinear system of equations. In the cases that we examine, this
system of equations has a solution which is either difficult to obtain or which is not unique.

For this reason we end up favoring the quadratic form.

Even though we find it difficult to depart from the quadratic form, we are still interested
in the goodness-of-fit of the estimated hedonic surfaces. Having some idea of the goodness-
of-fit relative to alternative forms should give us some indication of the sensitivity of the
benefit index to the choice of functional form. The R? values obtained using the quadratic
form are very high, and while we do find that a goodness-of-fit criterion would force us to
choose an alternative form, we argue that making this change will not lead us to significantly
different results. We offer support for this argument by computing approximate indexes that

lead us to similar results.

One of the main issues surrounding the literature on hedonic regression and hedonic
price indexes is the choice of functional form for the surface(s) to be estimated. It has been
shown that hedonic price indexes can be quite sensitive to this choice. Various specifications
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have been suggested and used, such as linear, log-linear, log-log, Box-Cox and quadratic as
well as a number of nonparametric forms. Little if an theory has been offered for the choice
of functional form and usually one specification is chosen based on some goodness-of-fit
criterion.

Notable exceptions to this are Triplett (1989) and Arguea & Hsiao (1993). Triplett has

suggested that a form such as the semilog exponential form:

log(P) =ﬂ0+ﬂ1zi+ﬂ2$§+... (4.1.1)

should be tried. Unfortunately, to date, this form has not been attempted. Arguea & Hsiao,
on the other hand, have shown that a particular model of buyer choice suggests that the
form should be linear. We will describe and discuss their argument in a subsequent section.

In section 2 we examine the possible use of the log-linear or log-log forms. Section 3
describes and discusses Arguea & Hsiao’s (1993) argument for the use of a linear functional
form. Section 4 looks at the use of a higher order polynomial form and section 5 looks at
the possibility of specifying the hedonic surface as a generalized additive model. Section 6

gives concluding remarks.
4.2 LOG-LINEAR OR LOG-LOG

As stated in the previous chapter, the most common functional forms used in the com-
puter literature on hedonic price functions are log-log and log-linear. These have usually
been chosen a priori or based on some goodness-of-fit test. Because of this, these seem the
most obvious forms to use when estimating our benefit index. However, we quickly run into

difficulty. Suppose we begin by estimating a surface of the form

log(Fit) = Pot + PuMIPSi + uiy (4.2.1)

assuming a characteristic space with a single dimension MIPS. As in the previous chapter
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we estimate a surface for each year t. Suppose also that we compute marginal prices and

estimate demand of the form

mp; = ag + a1t MIPS + B;Q + ni (4.2.2)

Now, suppose we take a buyer from year t and we attempt to predict the level of MIPS
they would purchase if faced with the hedonic surface at time ¢t + 1. To compute this, we
must find the point where the marginal hedonic surface for time ¢ + 1 intersects the demand

surface. The marginal hedonic surface at time ¢ + 1 is given by

dP . . ,
anr1ps = PBorsr + Bt MIPS)By 44 (4.2.3)

We then need to solve
exp(Bo,t+1 + P1a41MIPS)By 141 = éo + &1 MIPS + B (4.2.4)

Any solution to this equation will be difficult to obtain and work with. In addition, when
we move to the more realistic situation of a multiple characteristic model, we will be faced
with solving a simultaneous system of these equations and similar difficulty. One possible
solution would be to approximate the left hand side of (4.2.4) with a Taylor series expansion.
However, this seems to defeat the purpose of obtaining more precise estimates. We face
similar difficulty when we use a log-log specification instead of log-linear as in (4.2.1). The
important question to answer is: Will the estimated benefit index computed using (4.2.1)
be significantly different from a benefit index computed using (3.4.1)?

To address this question we computed hedonic surfaces using the data described in the
previous chapter for (4.2.1), a log-log specification and (3.4.1). We then computed Akaike’s
Information Criterion (AIC) for each surface. Those results are given in Tables 4.2.1 and
4.2.2.

Using the rule that we choose the model that minimizes AIC, we see in each table that
the quadratic model would be accepted over the log-linear model in each year except 1991,
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and that the log-log model would be chosen over both the log-linear and quadratic in every
year. However, we also see that within a given year all of the AIC values are fairly close,

implying similar fits.

At this point we are faced with comparing the benefits from choosing a log-log form
and achieving a better fit, and facing the difficulties associated with making that choice (in
terms of further computation toward the benefit index). We feel that the quadratic fit is
quite similar to the log-log fit (it is at least a good approximation) and that the difficulties
associated with the log-log model outweigh the benefits from the better fit. We therefore stay
with the quadratic model for now, and leave open the possibility of employing the log-log
model in the future. This future work will obviously require a solution to the problem of

obtaining counterfactual levels of characteristics.
4.3 ARGUEA & HSIAO (1993): LINEAR FUNCTIONAL FORM

Arguea & Hsiao (1993) examine a number of econometric issues related to estimating
hedonic price functions. One of these is choice of functional form. They argue that, given
certain assumptions, the theoretical model implies a linear functional form. They go on to
use this model in an analysis of the automobile industry. In this section we review their
argument, and using a linear form for the hedonic surface, proceed to compute our benefit

index.

The argument makes a number of initial assumptions. First, they assume that products
are divisible and, moreover, that the consumption technology is linear. In other words, buyers
can obtain a level of characteristic z by choosing various linear combinations of products to
get the desired level of z. For example, with computers, a buyer who desires 10 MIPS could
purchase 1/2 of a computer with 10 MIPS and 1/6 of a computer with 30 MIPS. More
formally, they assume the relationship
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z= Bz (4.3.1)

where 2 is the level of characteristics, = represents the quantities of the products and B is

the consumption technology matrix. For the example just described,

1/2

;=[10] B=[1030] and z= e

). (4.3.2)

For two characteristics, Figure 4.3.1 illustrates the situation (we assume 4 available
products). When goods are mapped into this characteristics space, the location depends on
the product price, the level of product characteristics, the consumption technology and the
consumer’s budget constraint.

Given a level of income for a consumer, the points A, B, C' and D in Figure 4.3.1 are
found by setting =z = ¢; = (0,0,0,...,m/F,,...,0,0,0), where m is income, P is product
price and m/P; occurs in the i** position, and then computing z = Be;. This computation
finds the levels of z that can be purchased if all of the income is spent on a single product.
The area inside 0AD in Figure 4.3.1 is then the set of all convex combinations of 0, A, B,

C and D. It represents the set of all feasible pairs (21, 22).

Given some preference structure for the consumer, buyers optimize over this set. Assum-
ing buyers spend all of their income, this solution will occur on the frontier ABC'D. Without
loss of generality, let us assume that product 1 maps to point A, product 2 maps to point
B, product 3 maps to point C and product 4 maps to point D. Then let us suppose that
the buyer’s optimum occurs at point E. In this case, buyers are purchasing a combination
of products 2 and 3 and none of products 1 and 4.

If we assume a representative consumer as Arguea and Hsiao, products 1 and 4 will
never be purchased at their current prices. However, in a competitive equilibrium we would
expect positive amounts of all goods to be consumed. Therefore, assuming a representative
consumer and perfect competition the prices of products 1 and 4 must fall until ABCD is a
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straight line as in Figure 4.3.2. Assuming ¢ is a vector of shadow prices for the characteristics

z, the line ABC'D can be represented by

P=¢z (4.3.3)

Then given data on P and z, the surface can be estimated as a linear regression.

This result relies heavily on two main assumptions: (1) a representative consumer and
(2) a linear relationship between goods and characteristics. We will discuss each of these
assumptions in the context of mainframe computers in turn.

The assumption of a representative consumer may be acceptable in an analysis of the
automobile industry as Arguea & Hsiao argue. However, our model is concerned with ac-
counting for the different experiences each individual buyer encounters. If we were to assume
a representative consumer, we would essentially be saying that all buyers benefit by exactly
the same amount. In fact, one of the main points which our analysis makes is that the
benefits to buyers differ across the product space. Making this assumption would mask this
point.

The assumption of divisibility and additivity of computer characteristics has been dis-
cussed by Bresnahan & Greenstein (1994). They define the biggest job a computer can
execute as the maximum feasible task (MFT). Consider the speed of a computer. The as-
sumption of a linear relationship between goods and characteristics implies that two 1 MIPS
systems are equivalent to one 2 MIPS system. However, this linear assumption ignores the
MFT and the fact that the one system can perform some tasks which the two systems cannot
perform. In this sense, the 2 MIPS system should be valued higher than the two 1 MIPS
systems. This then implies that the relationship between goods and characteristics with
computers is nonlinear.

The violation of these two assumptions in computers leads us to believe that the linear
relationship specified by (4.3.3) is incorrect in our situation. Nevertheless, we do estimate the
linear surfaces and compute the benefit index and compare the results with those obtained
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in chapter 3.

Table 4.3.1 provides AIC values for both the one variable and three variable hedonic
surfaces. The values in this table can be compared with those in Tables 4.2.1 and 4.2.2 to
compare the linear and quadratic specifications.

We see from these tables that for each year the quadratic model has a lower AIC value
than the linear model. This in turn would lead us to accept the quadratic model over the
linear model. This acceptance is further supported by noting that the quadratic terms in
both the one variable and three variable surfaces were statistically significant except in a few
instances. These results were given previously in Tables 3.4.1 and 3.4.13. We do not show
the results here, but an F-test of the quadratic model vs. the linear model was able to reject
the linear model.

Now, even though we do not believe the assumptions of Arguea & Hsiao are reasonable
in our situation, and we have an abundance of evidence for choosing the quadratic model
over the linear model based on goodness-of-fit, we still compute our benefit index using

linear hedonic surfaces. The indexes for the one variable and three variable cases are given

in Tables 4.3.2A-4.3.4.

The indexes for the one characteristic model shown in Tables 4.3.2A-B and 4.3.4 seem
reasonable. The growth rates are similar to those obtained using the quadratic model, but
the movements within each forward index more more erratic. The movement is an initial
decline followed by a period of increase and an eventual decline. This is in contrast to the
quadratic model where we saw an initial increase followed by decline through the end of the
time period. This more erratic movement is most likely being caused by the linear hedonic

surfaces crossing each other.

The forward indexes for the three characteristic model shown in Tables 4.3.3A-B make
little if any sense, and the reverse index, which we do not show, consists entirely of negative
values. This came as a result of upward sloping demand estimates and crossing hedonic
surfaces. However, because of the evidence we have against using the linear model, we do
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not concern ourselves with these results.

Arguea & Hsiao (1993) claim that, given certain assumptions, the correct functional
form specification for a hedonic surface is linear. We believe that these assumptions cannot
be met with mainframe computers, and that the linear form is in fact incorrect. We support
this claim with evidence that the quadratic model provides a superior fit, and evidence that
indexes computed using the linear specification make little sense. We therefore choose the
quadratic model over the linear model, and ignore the linear model in the remainder of our

analysis.
4.4 HIGHER ORDER TERMS

In chapter 3 we used a quadratic functional form in estimating our hedonic surfaces. We
chose this form at that time for its ease of computation. However, it is possible that a higher

order polynomial might achieve a better fit at the expense of parsimony.

In this section we look at the effects of adding higher order terms. We show that using
AIC as a selection criterion would force us to include these higher order terms. However, we
argue that including these terms makes further computation difficult. For instance, includ-
ing characteristics to the third power implies a quadratic marginal hedonic price function.
Assuming linear demand, computing the counterfactual levels of characteristics results in
non-unique solutions. In this case we are left with the difficult task of choosing among al-
ternative solutions. We show that the quadratic model and cubic models have similar fits,
and thus argue that the difficulties associated with adopting the cubic model outweigh the

benefits from improved fit.

Table 4.4.1 gives AIC values for the quadratic and cubic fits (for a one characteristic
model) for each surface from 1985-1991. We see that in every instance except 1985 the AIC
value would recommend we choose the cubic form. Attempting to continue with this form
causes difficulties. We can write the cubic form as
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k k k
P =fo +Zﬂjz,~ +E‘yja:f +Z§,'x:}+u. (4.4.1)
=1

i1=1 i=1
Assume we estimate (4.4.1) for each year and then try to compute the counterfactual level
of characteristics for a time ¢ buyer at time ¢ + 1. The marginal hedonic price function is

given by

dP
Iv—; = B + 2v;z; + 351‘:1:? (4.4.2)

and demand is given by (4.2.2). To compute counterfactual characteristics we must solve

Bi + 24;z; + 36528 = &o + duz;j + Bifd (4.4.3)
for each z;. Because (4.4.3) involves the square of z;, there are obviously two potential
solutions for each z;j. This then implies that there are 2% potential configurations for each
buyer for each year. The obvious solution to this problem is to choose the configuration
which sets the buyer at the highest level of utility, and while this solution is obvious, the
computation would be cumbersome.

In order to get an idea of the effect of including the cubic term on the benefit index,
we compute an approximate index for both the quadratic and cubic specifications. The

approximate index is defined as

=Y (H_;i'zﬂ(i—.zz’)g)

n

(4.4.4)

where H(,) is the hedonic surface at time (-), and z;; represents the observed levels of char-
acteristics at time ¢. This is essentially a hedonic index weighted by the levels of observed
characteristics in the sense that buyers only benefit in terms of price reductions and not in
terms of higher levels of quality.

This is a crude estimate of the benefit index and in fact turns out to perform much like
the traditional hedonic index. However, it should be useful for comparisons of models. If the
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approximate indexes are roughly the same, then the argument goes that the models provide
roughly the same fit and that buyers will benefit roughly the same under either scenario. We

compute this index for the one characteristic case for both the quadratic and cubic models.

These indexes are shown in Table 4.4.2. Except for the movement from 1987-1988, the
movements in each index are nearly the same in percentage terms. This evidence along with

the similarity in the fits implies that a benefit index computed with either model would

probably be “close.”

Again, as in the log-log case, we do not have firm evidence that the benefit indexes
computed with quadratic hedonic surfaces are similar to benefit indexes computed using cubic
hedonic surfaces. Unfortunately, the only firm evidence would be the indexes themselves,
and at this point we are not prepared to move in this direction when the benefits from doing
so may be small. For now, we rely on the evidence that we have shown and conclude that
the difficulties associated with adding higher order terms outweigh the benefits associated

with an improved fit. We therefore stay with the quadratic specification.

4.5 GAM: A FURTHER POSSIBILITY?

The previous sections in this chapter have described some alternatives to the quadratic
form used in the previous chapter. Each of those forms is parametric. In this section
we would like to discuss the possible use of generalized additive models (GAM); Hastie &
Tibshirani (1990). These models are semi-parametric in nature and employ smoothers to
fit a surface to the data. We will provide a brief description of these models, as well as
comparing the hedonic surface fit with a GAM and the hedonic surface fit with a quadratic
form. The results of this comparison will show that the GAM provides a much better fit
than the quadratic. We believe therefore that GAM should be given serious consideration
when estimating hedonic surfaces. However, we will show that these models, like the others
discussed in the chapter, are difficult to use when computing counterfactual characteristics.
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Additive models are defined by

k
Y=a+) fi(zj)+e (4.5.1)
1=1

where z; and ¢ are independent, E(€) = 0 and var(¢) = o2. z; could be a single pre-
dictor variable or could have multiple dimensions. The f; are unknown functions, or data
transformation, which the researcher wishes to estimate. |

Hastie & Tibshirani (1990) discuss the method for fitting (4.5.1). This method is based
on smoothers. There are a number of issues surrounding the use of smootiers including
which smoother to use and how big to make the neighborhoods around the target value. A
complete description of these issues is beyond the scope of this work. However, to get an
idea of the method, we will describe a smoother and how we chose the neighborhood size,
and then we will apply this to the data used in chapter 3 to estimate a hedonic surface. We
will then compare this with the quadratic hedonic surface based on fit and usefulness.

The smoother that we choose to use is a smoothing spline. The smoothing spline finds

the function f, among all functions f with two continuous derivatives, that minimizes the

penalized residual sum of squares

n b
= J@)? + [ (0P (452
=1 ¢

where A is a fixed constant and ¢ < x1 £ ... < z, < b. The first term in (4.5.2) measures
the residual sum of squares and the second term measures the curvature of f. As A — oo,
the curvature penalty dominates and (4.5.2) will approach a linear regression, whereas when
A — 0, there is essentially no penalty for curvature and the function f will be a twice
continuously differentiable function that interpolates the data.

It can be shown (Hastie & Tibshirani (1990)) that (4.5.2) has a unique solution for f.
This solution is the natural cubic spline. The natural cubic spline fits a cubic polynomial be-
tween the unique values of £ and “connect” these polynomials so that the second derivatives
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are continuous. The natural cubic spline is linear beyond the boundaries of the data.

Since the natural cubic smoothing spline fits a polynomial between each of the unique
values of z, it is not necessary to choose the neighborhood size. However, we still need to
choose A\. We choose to use a data driven approach for picking A known as cross-validation.
Cross-validation works by leaving out data observations one at a time and computing the

smooth at the missing point using the remaining data points. One then computes

CVN) = =3 (i = Iy (@) (453)

i=1
where 3‘; i represents the fit at z; leaving out the i*h data point. The parameter ) is chosen
by computing (4.5.3) for a range of possible \’s, and the A that minimizes (4.5.3) is chosen
as A.

Given this smoother, we estimate a GAM of the form

k
P= Z s(z;) (4.5.4)
=1

where s(-) implies that the smoother described above is used in the estimation. After esti-
mating (4.5.4) for both the one characteristic and three characteristic cases for each year, we
compared the computed fits with the corresponding quadratic fits via an F-test. Without
exception, the GAM fit was significantly different and superior to the quadratic fit. In fact,
in every instance the GAM fit reduced the residual sum of squares by at least ten percent.
However, we should expect this type of improvement since the GAM has much more freedom
in fitting.

The drawback to the GAM model, as with the other models discussed in this chapter
is its usefulness. There do exist numerical methods for obtaining derivatives of the fitted
surface at specific characteristic levels. This would allow us to compute marginal prices and
to estimate demand. Unfortunately, one cannot write down a specific form for the marginal
price function. This renders the computation of counterfactual characteristics difficult. Nu-
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merical methods could be employed, but would be quite expensive computationally. The
reason is that one would be required to solve an optimization problem for each buyer and
each characteristic. With three characteristics and more than 20,000 observations in our
data set, this would obviously be quite tedious. Without a means for lowering the dimension

of the problem, we chose to pass over this possibility.

Generalized additive models do provide a much better fit than the other models discussed
in this chapter, but their potential usefulness for computing benefit indexes is limited. Here
we have simply provided evidence that GAM yields a superior fit to any of the other models
examined with our data set. We leave open the possibility that with appropriate numerical
methods and computing power the GAM could be a useful tool for estimating hedonic

surfaces, hedonic indexes and benefit indexes.
4.6 CONCLUSION

In this chapter we have attempted to address the issue of functional form for a hedonic
surface. Our goal was to determine the sensitivity of our benefit index to this choice. We
looked at a number of alternative functional form specifications including log-linear, log-log,
linear, cubic and GAM. In general, our results showed that while some of these specifications
provided significantly better fits than the quadratic fit we adopted in chapter 3, the difficulties
associated with these alternative models rendered them difficult to use. A Taylor series

approximation is feasible, but this seems to defeat the purpose of obtaining a more precise

fit.

The difficulties arose mainly at the stage where we needed to compute counterfactual
characteristics. The forms listed above all have nonlinear marginal price functions associated
with them. Thus when we attempt to compute the predicted levels of characteristics by
finding the point where the characteristic demand intersects the marginal hedonic price
function, we are faced with solving a nonlinear system of equations. Finding this solution
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is difficult and in most cases is not unique. We do not run into these same problems when
we use the quadratic form. Therefore, we are faced with the tradeoff that these alternative
forms may provide better fits but at the same time are difficult to work with.

We believe this tradeoff favors the quadratic form, because it is quite simple to use and
provides a fit similar to, although worse than, the alternatives described. We support this
by providing evidence in the form of AIC values and approximate indexes. The evidence
leads us to believe that choosing an alternative form will probably have little affect on the
final benefit index. Unfortunately, we cannot support this with the actual benefit indexes,
which would be preferred, because of the difficulties in computing them. We rely instead
on the available information to support our claim. In the future we hope to overcome the
problems associated with these alternative models and to provide a more in-depth analysis

of the sensitivity of the benefit index to the choice of functional form on the hedonic surface.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com



4.6 TABLES

Table 4.2.1
One Characteristic Model
AIC Values for Various Fits
Year Log-Linear Log-Log Quadratic
1985 72708.30 68424.72 68739.48
1986 82182.64 77601.42 78679.03
1987 109843.20 105303.40 |. 108476.20
1988 97854.82 92634.83 95605.66
1989 96513.47 91578.89 94377.92
1990 73841.82 69995.32 72410.83
1991 17430.81 16766.25 17522.77

Table 4.2.2

Three Characteristic Model

AIC Values for Various Fits
Year Log-Linear Log-Log Quadratic
1985 72689.70 68226.19 68590.41
1986 81954.46 77485.07 76696.10
1987 109827.00 104131.20 103563.10
1988 97513.97 92114.56 94154.19
1989 96044.58 90441.50 93428.74
1990 73273.02 68956.65 72220.31
1991 17356.83 16344.74 17492.54
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Table 4.3.1
One and Three Characteristic Model
Linear Functional Form
Year One Char. Three Char.
1985 70816.72 70273.28
1986 79267.45 78670.11
1987 108587.90 104925.20
1988 95714.57 94275.78
1989 94848.72 93972.58
1990 72445.60 72340.85
1991 17569.19 17520.83
Table 4.3.2A

One Characteristic Model-Linear Hedonic
Utility-Based Price Index—P* as Weight
Year 1985 1986 1987 1988 1989 1990
1985 229.30
1986 105.35 233.12
1987 157.79 161.78 224.29
1988 188.29 186.56 198.92 214.44
1989 176.24 176.12 176.72 173.51 198.80
1990 136.76 136.58 136.61 134.59 133.67 178.56
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -13.83 -16.93 -20.19 -25.43 -34.36 -57.97
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Table 4.3.2B
Oue Characteristic Model-Linear Hedonic
Utility-Based Price Index—P° as Weight
Year 1985 1986 1987 1988 1989 1990
1985 240.28
1986 90.67 247.72
1987 109.02 110.16 235.62
1988 173.36 172.65 180.50 226.77
1989 180.08 180.65 180.68 176.48 195.14
1990 137.81 137.98 137.75 135.96 134.30 157.17
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -14.61 -18.14 -21.43 -27.29 -33.43 -45.21

Table 4.3.3A
Three Characteristic Model-Linear Hedonic
Utility-Based Price Index-P* as Weight
Year 1985 1986 1987 1988 1989 1990
1985 311.86
1986 21.33 315.76
1987 246.56 246.34 302.70
1988 238.13 236.80 240.61 294.53
1989 222.86 221.55 220.28 217.63 278.22
1990 169.95 169.25 168.01 166.61 166.38 257.01
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -18.96 -23.00 -27.69 -36.01 -51.16 -94.39
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Table 4.3.3B

Three Characteristic Model-Linear Hedonic
Utility-Based Price Index-P? as Weight

Year 1985 1986 1987 1988 1989 1990

1985 -58.95

1986 114.62 -58.17

1987 74.51 75.97 -58.93

1988 75.78 76.95 74.28 -59.33

1989 78.62 79.64 78.59 77.28 -61.02

1990 87.74 88.26 87.77 87.57 85.07 -64.18

1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR NA NA NA NA NA NA

Table 4.3.4
One Characteristic Model-Linear Hedonic
Reverse Index

Year 1985 1986 1987 1988 1989 1990

1985 100.00 100.00 100.00 100.00 100.00 100.00

1986 115.89 98.03 98.65 98.91 99.19 99.26

1987 93.62 92.67 94.49 95.64 96.52

1988 91.46 89.82 92.23 94.23

1989 74.95 72.26 78.66

1990 56.94 50.75

1991 48.81
AAGR 14.75 -3.30 -2.97 -7.21 -11.26 -11.95
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Table 4.4.1
One Characteristic Model
AIC Values for Quadratic and Cubic Model
Year Quadratic Cubic
1985 68739.48 68741.21
1986 78679.03 78547.67
1987 108476.20 108435.00
1988 95605.66 95409.94
1989 94377.92 93715.62
1990 72410.83 72365.06
1991 17522.77 17519.48
Table 4.4.2
One Characteristic Model
Approximate Index for Quadratic and Cubid
1985 100.00 100.00
1986 97.97 97.02
1987 1741 75.74
1988 64.44 74.22
1989 29.82 44.85
1990 17.53 22.18
1991 10.02 14.26
AAGR -38.34 -32.46

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com



4.7 FIGURES

Figure 4.2.1

2]

22

122

er. Further reproduction prohibited without permissionyww.manaraa.com




Figure 4.2.2
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CHAPTER 5
CONCLUSION

Until recently, hedonic price indexes were the predominant method for measuring the
improvements in price per performance for mainframe computers. These indexes showed
that price per performance improved at roughly 20-25% over the past 30 years. However,
little attention has been given to how well these indexes measure the benefits buyers receive
from improvements in computer technology. Trajtenberg (1990) proposed a method for
measuring the benefits from product innovation and applied his procedure to the computed
tomography scanner industry. His results show that hedonic indexes understate the true
benefits from improvements in technology in that industry. In this work we have proposed an
alternative procedure which also measures the benefits which acrue to buyers from improving
product technology. We find, in contrast to the results of Trajtenberg, that the hedonic index
overstates the true benefits to buyers from product innovation in the mainframe computer

industry.

In chapter 2 we compared our benefit index with the hedonic index both geometrically
and via a numerical example. Our findings show that the benefit index will decline at a
slower rate than the hedonic index under most circumstances. This result implies that the
hedonic index will most likely overstate the true benefits buyers receive from improving
product technology. This result comes as a consequence of our assumption of diminishing
marginal utility for product characteristics, i.e. buyers have a lower willingness to pay for
higher levels of characteristics on a per unit of characteristic basis. This assumption is a

consequence of a concave bid curve and downward sloping demand.

In addition to the main result that the benefit index will most likely decline at a slower
rate than the hedonic index, we found that the benefit index is sensitive to the distribution
of buyers across the product space and to the level of the highest available quality. With
regard to the distribution of buyers, we found that as the distribution of buyers shifted
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toward higher levels of quality, the benefit index declined at a faster rate. This implies
that buyers purchasing high levels of quality must benefit more from price reductions and
extensions in the product space than buyers purchasing low levels of quality. Therefore,
industries in which most buyers are purchasing the highest level of quality available have
buyers who benefit more from improving technology than industries where most buyers are
purchasing low levels of quality. With regard to the level of .the highest available quality, we
found that as that level increased, the benefit index declined at a faster rate. This occurred
because increasing this level effectively frees up a constraint for buyers and allows them to
optimize when making a purchase decision. Thus, industries which see fast rates of growth
in available quality levels have buyers who benefit more than industries where there is little

or no growth in the highest available quality.

Both of these results are intuitively appealing, but unfortunately the hedonic index does
not incorporate either factor. Changing the distribution of buyers or the highest available
quality level has no effect on the hedonic index. We therefore argue that the hedonic index is
a biased measure of the benefits to buyers. The evidence we obtained in chapter 2 indicated
that the hedonic index overstates the benefits to buyers, but Trajtenberg’s results indicate
the opposite. We took up this bias issue as an empirical one in chapter 3 and investigated
the performance of both our benefit index and the hedonic index with data on the mainframe

computer industry from 1984-1991.

In chapter 3 we employed a new dataset on the mainframe computer industry from
1984-1991. This dataset was unique for this industry because it was at the buyer level. The
data described the purchases by individual buyers as well as characteristics of those buyers.
This detailed data allowed us to move in directions previously unavailable to researchers.
With this data we proceeded to follow a procedure initially suggested by Rosen (1974) for
estimating demand for product characteristics. As with previous research, we focused on
speed and memory as our characteristics. Then given estimates of demand, we estimated
our benefit index.
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The results for our benefit index in the mainframe computer industry showed that the
benefits to buyers from improving computer technology are roughly one-half those that
the hedonic index would indicate This result was initially quite suprising because it is the
opposite of what we expected given Trajtenberg’s results. However, we were able to reconcile
the differences by looking at the differences in the data used. The computed tomography
scanner industry which Trajtenberg analyzed is characterized by buyers who purchase the
highest levels of quality available and by technology which changes dramatically over time.
In contrast, the mainframe computer industry during the time period which we investigate is
characterized by buyers who purchase predominantly low levels of quality and by technology
which changes very little over time. In addition to the differences in the data, Trajtenberg’s
model accounts for the greater variety of products which become available over time in
addition to the introduction of previously infeasible levels of quality. The incorporation of
this product innovation would cause Trajtenberg’s index to decline at a faster rate than ours
and thus account for more benefits. Based on our results in chapter 2 which showed that
the benefit index would decline at a faster rate given buyers at higher levels of quality and
technology which changes a great deal over time, we argue that these factors, data differences

and model differences, explain the discrepancy between the indexes.

Finally, in chapter 4 we looked at the sensitivity of the benefit index computed in chap-
ter 3 to the choice of functional form for the hedonic surface. In general, we found that
the quadratic form which we used in chapter 3 provided a similar fit to the alternatives we
investigated, namely log-linear, log-log, linear, cubic and a generalized additive model. Un-
fortunately, each of these alternative forms turned out to be excessively difficult to use when
attempting to compute the benefit index. Therefore we were unable to directly compare
results from different specifications. However, since the quadratic form was simple to use
and provided a similar fit, we argued that the quadratic form was a good approximation
and could be chosen on the basis of ease of use. We left a complete analysis of this issue to
future work.
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While this work has moved in a new direction for research into the benefits from product
technology, there are a number of issues which need to be addressed. First, and most im-
portantly, a method for obtaining standard errors for the benefit index is missing from this
analysis. Thus while we have obtained a benefit index which declines at roughly one-half
the rate of the hedonic index, we have not performed any statistical tests for the difference
between the rates of change. Obtaining standard errors will not be trivial due to the com-
plexity of the procedure for obtaining the benefit index. We believe that an approach based
on the delta-method is one possibile strategy, and that estimating the standard errors via
some bootstrap method is another possibility. We hope to address this issue soon in future
research. A second issue concerns the choice of functional form. While we attempted to
address this issue in chapter 4, we were for the most part thwarted in our efforts, because
the alternative forms which we investigated proved to be difficult to use when estimating the
benefit index. In order to effectively address this issue, one needs to first solve the standard
error issue in order to be able to test amongst competing specifications, and second one
must solve the problem of computing the benefit index when using these alternative forms.
A third issue which needs to be addressed is the assumption of additive separability. We
employed this assumption in order ease the computation of the benefit index. We then ran
into difficulties when we attempted to relax it by obtaining upward sloping demand curves.
This is most likely an anamoly of our data and not a result directly connected to our model.

This model should be applied to other datasets in order to investigate this specification issue.
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